Land-Use References

Year Title (Author, Description) File Download
2008

Curing Environmental Dis-Integration: A Prescription for Integrating the Government of Alberta's Strategic Initiatives

Danielle Droitsch, Steven A. Kennett, and Dan Woynillowicz

The Government of Alberta lacks the regulatory ability to manage the cumulative environmental impacts of the industrial development and other human activities now occurring across Alberta's landscapes. A new approach to environmental decision-making is needed to avoid continued decline in key indicators of environmental quality and depletion of Alberta's natural capital.

Contact ALCES for Danielle Droitsch, Steven A. Kennett, and Dan Woynillowicz, 2008
2009

Regional Strategic Environmental Assessment in Canada: Principles and Guidance

Canadian Council of Ministers of the Environment

Contact ALCES for Canadian Council of Ministers of the Environment, 2009
2009

Literature Review of Selected Best Management Practices Specific to Agricultural Practices in Red-Assiniboine River Watersheds

Stephanie Melles

Contact ALCES for Stephanie Melles , 2009
2009

Quantifying land use of oil sands production: a life cycle perspective

Sarah M Jordaan, David W Keith and Brad Stelfox

Methods for the inclusion of land use in life cycle assessment are not well established. Here, we describe an approach that compares land disturbance between spatially compact and diffuse activities that contribute to the life cycle of a single product, in this case synthetic crude from Alberta’s oil sands. We compare production using surface mining and in situ extraction technologies. In situ technologies disturb less land per unit of production than surface mining, but the spatial footprint of in situ production is more dispersed—increasing landscape fragmentation—and in situ production requires more natural gas which increases land use due to gas production. We examine both direct and peripheral land use of oil sands development by quantifying land disturbance using a parameterized measure of fragmentation that relies on ‘edge effects’ with an adjustable buffer zone. Using a life cycle perspective, we show that the land area influenced by in situ technology is comparable to land disturbed by surface mining when fragmentation and upstream natural gas production are considered. The results suggest that land disturbance due to natural gas production can be relatively large per unit energy. This method could be applied to other energy developments, for example, a comparison between coal mining and natural gas production when both fuels are used to generate electricity.

Contact ALCES for Sarah M Jordaan, David W Keith and Brad Stelfox, 2009
2009

Ecosystem Goods and Services Southern Alberta: A Framework for Assessing Natural Asset Condition

02 Planning + Design Inc.

Society’s well-being, to a large extent, is underpinned by a wide range of Ecosystem Goods and Services (EGS) that are provided by natural assets. These include: provision of clean air and water;-- water storage and flood control;-- carbon sequestration and greenhouse gas regulation;-- pollination of crops and native vegetation; and-- the fulfillment of cultural, spiritual, and recreational needs.-- The transfer of EGS to future generations is compromised if land use planning does not prevent the degradation and loss of natural assets in the landscape. Alberta’s new Land Use Framework (LUF) provides opportunities to address interactions between society, nature, and EGS to promote sustainable development. The ecosystem services concept frames land use planning and natural resource management issues to explicitly link ecosystems and human welfare. This provides decision makers with more information to help them achieve an appropriate balance between the many costs and benefits of land use decision-making. Building on previous work, this report contributes to this process by identifying indicators of natural asset conditions, linking these indicators to ecosystem services, and suggesting a methodology for assessment in a land use planning context. Several key findings should be highlighted from the literature review. One prevalent theme suggests that focusing management efforts on provisioning services (i.e., crops, timber, fossil fuels) often results in tradeoffs where other ecosystem services are degraded as a consequence. Another key theme is the importance of multi-scale approaches to ecosystem service assessments (e.g., regional, landscape, watershed, site). A third key finding is the lack of available biophysical methodologies to quantify ecosystem service magnitudes, as most quantification studies utilize economic valuation techniques. In addition, appropriate thresholds and targets are rarely identified through scientific research, although some science-based targets have been identified for wetland cover (3% to 7% of a watershed), impervious surfaces (<10% of a watershed), riparian buffer widths, and road densities. In most cases, target-setting requires integration of science and societal valuation. The landscape context also must be considered when setting targets, as appropriate values often vary considerably throughout a given region. Building on the information gained from the literature review, this report identifies a suite of indicators to assess ecosystem conditions and related services at multiple scales. Six criteria were used to assess the suitability of indicators: comprehensibility for both professionals and the lay public; -- range of applicability to multiple ecosystem services;-- responsiveness to management practices; -- measurability of cost effectiveness; -- ease of integration with existing programs and data; and, -- relevance within land use planning (predictable in scenario modelling --and related to published scientific thresholds).

Contact ALCES for 02 Planning + Design Inc., 2009
2009

THE IMPLICATIONS OF ALTERNATIVE GROWTH PATTERNS ON INFRASTRUCTURE COSTS

IBI Group

EXECUTIVE SUMMARY Purpose of Report Calgary has seen record levels of growth over the last few years and population and economic growth is expected to continue in the future. Over the next 60 years the population in the city itself is expected to grow from approximately 1 million to 2.3 million persons, with another 0.5 million people in the surrounding region. This level of growth offers the opportunity, and the need, to shape the future land use and transportation patterns of Calgary. Plan It Calgary has commissioned this study to assist in development of an integrated plan for land use and transportation. It examines the infrastructure implications of two growth patterns. The Dispersed Scenario reflects current trends and the continuation of current city policies, while the new Recommended Direction intensifies jobs and population in specific areas of the city, and links them with high-quality transit services. The types of infrastructure investigated in this report are transportation (roads and transit), water and sewer services, police, fire, parks, recreation centres and schools. Key Findings • The land required for Plan It Calgary’s Recommended Direction is 25% smaller than the Dispersed Scenario (which reflects current policy and trends). • The cost to build Recommended Direction is 33% less expensive than the Dispersed Scenario. • The Recommended Direction would be less expensive to operate and maintain over the next 60 years than the Dispersed Scenario. • The cost to build, maintain and replace aging streets has the largest impact when comparing costs between the two growth patterns. Reduced greenfield growth in the Recommended Direction will result in a 36% cost savings for new streets compared to the Dispersed Scenario, and will also reduce maintenance and replacement costs. • Enhanced Primary Transit service proposed in the Recommended Direction would actually be less expensive to build than extending transit to suburban communities in the Dispersed Scenario. Increased transit ridership in Recommended Direction, which provides double the service compared to the Dispersed Scenario, means that it would cost approximately the same to operate transit in both growth patterns. • Reduced greenfield growth in Recommended Direction will result in a 55% cost savings for water and wastewater systems compared to the Dispersed Scenario. There would be no net difference in costs for the existing parts of Calgary since replacement of water and wastewater systems will be required as infrastructure ages. Significant intensification of existing areas and growth in new greenfield communities could both trigger the need to upgrade existing systems.

Contact ALCES for IBI Group, 2009
2009

Moose Alces alces behaviour related to human activity

WIEBKE NEUMANN

The spatiotemporal dynamics of human activity requires a better understanding of the ecological effects on wildlife. This thesis focuses on the behavioural response of a harvested species, moose (Alces alces), to dynamic human activities e.g. hunting and recreation, and to static influences like roads, using experimental and descriptive approaches. Potentially lethal (hunting) and non-lethal (hiking, snowmobiling) activities provoked short-lived increases in moose movement activity and caused spatial displacement. The data suggests a uniform response towards unexpected disturbance and that moose are sensitive to human proximity. Hunting clearly provoked the strongest response. Moose approached by a hunting dog commonly fled, suggesting adjustments in anti-predator behaviour towards a nonnative predator. This may lead to predator facilitation where wolves and human predation co-exist, because the moose’s behavioural response towards one predator possibly increases the predation risk by the other. Unexpectedly, hiking and motordriven (snowmobiling) recreational activity caused a comparable change in moose behaviour. The short-lived response towards dynamic human activities indicates a rather minor impact on moose total energy budget from a single disturbance. Moose seldom crossed roads, but did increasingly so during migration. Roadcrossing sites were aggregated, suggesting well established travel routes and corridors for migratory moose. Moose did not cross roads more often during hunting season. In general, moose little utilized habitats in proximity to roads. Moose-vehicle collisions did not occur where and when moose most commonly cross roads. My results suggest a higher risk to human safety during times of poor visibility and close to urban areas, but not necessarily in the vicinity of forests. For wildlife subject to intensive harvest and sensitive to human proximity, I emphasize the need to include animal behavioural, landscape ecological, political as well as socio-economical aspects for future research concerning human-wildlife interactions. I also recommend future research to combine wildlife movement data from active tracking sensors such as GPS-collars together with collision data to improve conclusions about wildlife movement corridors and traffic risk zones.

Contact ALCES for WIEBKE NEUMANN, 2009
2010

Collisions between Wildlife and Vehicles in Alberta

Amy Carter

Contact ALCES for Amy Carter, 2010
2010

Demand Letter to Minister Prentice

Jack Woodward, Woodward & Co. LLP

We are legal counsel for Beaver Lake Cree Nation, Enoch Cree Nation, Chipewyan Prairie Dene First Nation and Athabasca Chipewyan First Nation (collectively, the “First Nations Petitioners”) in respect of this matter. We write on behalf of the First Nations Petitioners to request that you take immediate steps to protect the full ranges of the remaining woodland caribou herds in northeastern Alberta by preventing any further industrial activity anywhere within those ranges. Leading woodland caribou biologists have been recommending this course of action to you and to your ministry (Environment Canada) for several years. You and your ministry have also known for several years about the precipitous decline of woodland caribou in northeastern Alberta, but to date you have done nothing to protect woodland caribou or their habitat.

Contact ALCES for Jack Woodward, Woodward & Co. LLP, 2010
2010

Alberta Traffic Collision Statistics

Alberta Transportation Office of Traffic Safety

The purpose of this report is to provide an overview of the “who”, “what”, “when”, “where”, “why”, and “how” of traffic collisions which occurred in Alberta during 2010. Although the report is general in nature, it pays particular attention to casualty collisions, that is, those collisions which result in death or injury. Legislation in Alberta requires that a traffic collision, which results in either death, injury or property damage to an apparent extent of $1000.00 or more, be reported immediately to an authorized peace officer. The officer completes a standardized collision report form which provides information on various aspects of the traffic collision. This report is based on the data collected from these report forms. The collision report form is issued with standard instructions to every police service within Alberta, to be completed by the officer attending the scene of a motor vehicle collision or at a police station. Police priorities at the scene of a collision are to care for the injured, protect the motoring public and clear the roadway. Completion of the collision report form is a secondary, but necessary task. After completion, the information on the collision report form is coded for input to computer files. The Alberta Collision Information System, which has been operational since 1978, undergoes several manual and computerized inspections each year in order to ensure maximum accuracy of the final data output. This collision information is used to make Alberta’s roads safer for all road users. Due to continuing police investigation, some numbers presented in this report may be subject to revision. It should also be noted that not all percentage columns will total 100 due to rounding error. This report was produced based on collisions reported to Alberta Transportation by police, at the time of printing. The numbers presented in this report will not be updated. However, the patterns and trends detailed in this report represent an accurate description of Alberta’s traffic collision picture.

Contact ALCES for Alberta Transportation Office of Traffic Safety, 2010
Projects: 51-60 of 98
< 1 2 3 4 5 6 7 8 9 10 >
Items per page: 10 25 50