ALCES Based Project Reports

Year Title (Author, Description) File Download
2015

The Future of Wildlife Conservation and Resource Development in the Western Boreal Forest

Carlson, M., and D. Browne

Carlson, M., and D. Browne. 2015. The Future of Wildlife Conservation and Resource Development in the Western Boreal Forest. Canadian Wildlife Federation, Kanata, ON. Canada’s western boreal forest is a region of national and international interest due to its immense economic and ecological values. The region’s hydrocarbons, timber, arable land, and minerals are a source of great economic potential, but also carry risks to wildlife and their habitat due to the cumulative effects of dispersed and often overlapping impacts of resource development. The aim of the project was to start a national dialogue about options for wildlife conservation in this rapidly developing region, with the ultimate goal of creating a comprehensive land-use plan for wildlife conservation and resource extraction in the western boreal forest. The analysis of the potential cumulative effects of the next 50 years of development in the region is a first step in this process.

Contact ALCES for Carlson, M., and D. Browne, 2015
2014

Final UBBCES Natural Capital Report

Brad Stelfox, Matt Carlson, ALCES

Temporal and Spatial Changes in the Natural Capital of the Upper Bow River Basin, Alberta, Canada. This report summarizes key findings of the Upper Bow River Basin Natural Capital Study – a project tasked with quantifying the current condition, historical changes, and future projections in natural capital for the Upper Bow River Basin, Alberta. These findings are intended to inform and assist land use decisionemakers required to devise regional plans that consider natural capital tradeeoffs.

Contact ALCES for Brad Stelfox, Matt Carlson, ALCES, 2014
2013

Determining Appropriate Nutrient and Sediment Loading Coefficients for Modeling Effects of Changes in Landuse and Landcover in Alberta Watersheds

Dr. Bill Donahue

Alberta is engaged in creating watershed management plans throughout the province, that can be relied upon to provide direction for management of future development and landuse change, while attempting to protect the health of Alberta’s rivers and lakes. Because of widespread and growing nutrient enrichment problems and their effect on ecosystem health, and increased downstream water treatment costs, the reduction or avoidance of excess loading of organic matter and nutrients into rivers is a common goal of water resource managers in Alberta and elsewhere. Sources of these deleterious substances include easily identified sources, such as a wastewater treatment plant (point sources), and diffuse non-point sources associated with human landuse and changes in landuse.1-4 Informed landuse and watershed management that does not harm water quality and freshwater ecosystem health demands an understanding of the effects of landuse change on aquatic systems. Models that link landscape change and changes to water quality or aquatic ecosystem health are therefore relied upon to inform decision-makers, rather than simply tracking changes in water quality, which provides no insight into the sources of various chemicals. Most commonly, catchment export coefficients and loading rates are modeled to estimate the effects of landuse change on pollutant delivery and water quality, because it is input loads tied to particular sources or landuse change that permit either the avoidance of effects or remediative action to mitigate them. These are generally derived from small-scale field studies, and can range from simple regression models5 to more complex mechanistic models.4, 6-12 However, loading rates or export coefficients derived from small-scale catchments are often of limited use in estimating the effects of large-scale land use changes on water quality, or when applied to other locations. Similarly, modeling of export coefficients and pollutant transport based on detailed, site-specific hydrogeological, climatic, and landcover information acquired from field studies is generally not possible because of the exceptional expense and time needed to acquire such data.13, 14 Because the utility of coefficients determined somewhere else is uncertain, it is recommended that regional or local pollutant export coefficients be developed for estimation of pollutant loading in water bodies if sufficient landuse, water chemistry, and flow data are available.11 Unfortunately, in most regions, including Alberta, there has been insufficient environmental monitoring or effort to quantify effects of landuse change on nutrient and sediment export and water quality, in ways that enable land and water managers to make informed decisions to reduce the negative impacts of broad and large- scale landuse change or planning on water quality. Consequently, watershed managers must model estimates of risks of landuse change to aquatic ecosystems from commonly available information, and incorporate the use of loading coefficients developed elsewhere.3 In the absence of site- or region-specific studies and export coefficients, modelers and managers must rely on literature-derived export coefficients to assess the costs and benefits of past, current, and future landuse decisions, in terms of the potential for reducing water quality. However, notwithstanding that this necessity is driven by insufficient monitoring and environmental assessment, there often remains resistance to the conclusions of negative impacts of human landuse from the modeling of effects of landuse change on water quality that has been based on export coefficients developed elsewhere. Many studies elsewhere have provided export coefficients for nutrients and organic matter for forested, agricultural, and urban landscapes.4, 13, 15-17 The goal of this review is to assess the suitability of literature-based nutrient and sediment loading coefficients for modeling the potential for landuse 1 change to affect water quality in Alberta streams and rivers. In assessing the effects of landuse - or landuse change - on chemical loading in freshwaters, it is important to keep in mind two important caveats that were highlighted by Beaulac and Reckhow (1982)13: • As watersheds shift from natural, undisturbed conditions to increasing levels of human disturbance, the ecological mechanisms controlling nutrient flux become more complex and less understood. Therefore, the ability to accurately quantify or predict interactions between land use and aquatic conditions or responses becomes less precise and more uncertain. • For management of water resources, the use of nutrient loading coefficients for predicting changes in water quality conditions that follow changing land use is highly subjective. To reduce uncertainty in this use, the user of these coefficients must be familiar with the biogeochemical processes that influence nutrient fluxes. This is especially the case when there are insufficient local landuse and water quality data to determine loading coefficients. However, because of the breadth of scientific literature on the topic, the absence of local data should not be considered an absolute barrier to estimation of impacts of landuse change on water quality, for the purposes of landuse or watershed planning. This becomes more clear when considering the fact that landuse decisions will proceed whether or not local data are available to inform them definitively about non-point source pollution dynamics. It is arguable that the goal of any environmental modeling exercise is to quantify the nature, scale, and probability of risk, and provide the foundation for reducing environmental risks associated with particular management decisions. Therefore, modeling of non-point source pollution dynamics associated with landuse is a valid and valuable exercise, even in the absence of local data. With that in mind, the approaches and loading coefficients presented here are intended to aid landscape modelers, by providing a starting point for assessing environmental risk and the potential mitigations strategies that may be pursued to reduce them.

Contact ALCES for Dr. Bill Donahue, 2013
2013

A Fork in the Road: Future Development in Ontario’s Far North

Carlson, M., and C. Chetkiewicz. 2013

Ontario's Far North contains some of the world's most intact subarctic terrestrial and aquatic ecosystems. It is a stronghold for a number of fish and wildlife species such as woodland caribou, wolverine, and lake sturgeon. The region is also the homeland of Ojibwe, Oji-Cree and Cree First Nations who have established longstanding traditional cultural values and a unique relationship with this land that they have used and occupied for thousands of years. The environment in the Far North provides important "services" to people such as climate regulation, food, cultural values, and clean and abundant water supplies. The Far North also includes a wealth of natural resources such as minerals, hydropower development potential, timber resources, and other resource development opportunities. In 2010, the Government of Ontario committed to working with First Nation communities to develop land-use plans that support conservation and development of the Far North. An important step in the planning process is assessing whether the cumulative effects of the full suite of potential future developments are compatible with the aspirations of First Nations and Ontario. To support decision-making in this unique region, we applied a simulation model (ALCES®) to explore changes in the composition of regional landscapes associated with potential future mining, hydroelectric development, and forestry activity as well as forest fires, and the implications for woodland caribou, wolverine, moose, and the intactness of watersheds. Our study focused on the James Bay Lowlands, which includes the large mineral reserves in the Ring of Fire, numerous kimberlite deposits, including the Victor Diamond mine, and major rivers with hydropower potential such as the Attawapiskat, Moose, and Albany. To encompass the full extent of the Pagwachuan Caribou Range, the study area extended south of the James Bay Lowland thereby also incorporating portions of five Sustainable Forest Licenses that are managed primarily for timber production. The simulated development scenario resulted in a three-fold increase in anthropogenic footprint over 50 years, primarily due to road and transmission corridor expansion to support industrial developments. The spatial pattern of the simulated footprint differentiated between the dispersed road network associated with forestry in the south and the more isolated, but intensive, mining and hydroelectric Executive Summary To support decisionmaking in this unique region, we applied a simulation model (ALCES) to explore changes in the composition of regional landscapes associated with potential future mining, hydroelectric development, and forestry activity as well as forest fires, and the implications for woodland caribou, wolverine, moose, and the intactness of watersheds. vi Canadian Boreal Initiative | Wildlife Conservation Society Canada developments in the north. The simulated forestry activity in the south had consequences for the Pagwachuan Caribou Range where the risk to herd survival approached the high category and range disturbance exceeded a threshold of 35% – a guideline in the national caribou recovery strategy. Simulated impacts to wolverine were also greatest in the south, where expansion of the road network caused habitat suitability to decline. Land use impacts to wildlife such as caribou and wolverine may be exacerbated by climate change. As an example, the moose population was simulated to increase twofold when climate change was incorporated, which would likely cause the region’s wolf population to grow with negative implications for caribou herd viability. Simulated mining and hydroelectric developments were sufficiently isolated at a regional scale to avoid large impacts to caribou and wolverine. A greater concern, however, may be the consequences of these developments to the integrity of aquatic ecosystems. The watershed impact score increased for a number of northern watersheds, demonstrating that risk to aquatic ecosystems is likely to increase in watersheds that contain important natural resource regions such as the Ring of Fire due to the presence of multiple mining and hydroelectric developments. The outcomes of this pilot project offers important considerations when addressing cumulative effects in northern Ontario, including: the benefit to wildlife of limiting land use to isolated regions within an otherwise intact landscape; the need to improve understanding of the cumulative effects to aquatic ecosystems of multiple large-scale developments (e.g., mines, dams) within northern watersheds; and the potential for climate change to increase the sensitivity of wildlife to industrial land use. We hope these findings will inform land-use planning at both the community and regional scale and motivate additional analyses that are needed to comprehensively assess cumulative effects in Ontario’s Far North.

Contact ALCES for Carlson, M., and C. Chetkiewicz. 2013, 2013
2012

Ghost River Watershed Cumulative Effects Study

Dr. Brad Stelfox, Cornel Yarmoloy

The watershed of the Ghost River lies in the upstream shadow of the burgeoning metropolis of Calgary and its surrounding bedroom communities. The Ghost River watershed possesses an exceptional abundance of natural resources, including forests, grasslands, rivers, diverse flora and fauna, and majestic scenery. It also hosts an abundance of consumptive natural resources including wood fiber, livestock forage, hydrocarbons, and wildlife and fish. During recent decades, a rapid increase in intensity of several landuses has occurred, as forestry, livestock grazing, oil and gas extraction, rural residential, hunting, and non-motorized and motorized recreation have all grown to satisfy increasing regional demand. The historical management paradigm of the Government of Alberta for the East Slopes is best described as “multiple use”. This strategy reflects the belief that multiple overlapping land uses can co-occur without meaningfully compromising the performance of key ecological, social, and economic indicators. Increasingly, quantitative and subjective assessments by the scientific community and the public have shown that the laissez-faire nature of the government’s “multiple use” formula is no longer serving society well. In 2011, a Phase 1 report examining the cumulative effects of “business-as-usual” land uses within the Ghost River watershed identified a number of challenges to maintaining acceptable performance levels of ecological, industrial, and recreation indicators. Projections using the ALCES landscape simulator (www.alces.ca) quantified past and potential future declines in water quality, recreation potential, fish and wildlife indicators, and problems with sustainable forestry. The Phase I report can be downloaded from http://www.ghostwatershed.ca/GWAS/Home.html. The Ghost River Watershed Alliance Society received funding from the Alberta Ecotrust Foundation and the Calgary Foundation to explore and assess beneficial management practices (BMP) that have the potential to improve performance of indicators relative to the business-as-usual (BAU) practices explored in Phase 1. Through a series of four independently facilitated workshops, the GWAS sought to engage local and regional communities, recreationalists, and government representatives in exploring potential solutions to enhance sustainable land stewardship for the watershed. Information obtained from these workshops was augmented with data obtained from other relevant projects examining the interface between BMP and ecological goods and services in Alberta’s east slopes. Based on guidance obtained from BMP workshops and other studies (Southern Foothills Study, Upper Bow Basin Cumulative Effects Study, South Saskatchewan Regional Plan), the following issues and BMP were explored for the Ghost River Study: Issue: High level of landscape fragmentation BMP: -Accelerated rates of reclamation of linear features such as seismic lines, minor roads, inblock forestry roads, and non-designated off-highway vehicle trails Issue: High levels of vehicle accessibility BMP: -Restriction of off-highway vehicle (OHV) activity to an engineered and designated OHV trail system that minimizes adverse effects on erosion and wildlife and provides safe and enjoyable OHV activity. -Enforcement increased to minimize off-highway vehicle use on non-designated trails and contain use to a designated vehicle trail network Issue: High Level of Watershed Discontinuity BMP: Increased replacement of “washed out” or “hung” stream culverts Issue: Loss of Riparian Habitat, Forest Structure, Wood Security BMP: -Reduction of current annual allowable forestry harvest commensurate with increased in-block retention of trees, and increased buffers along watercourses and ephemeral streams Issue: Reduced Water Quality from Elevated Nutrient Runoff BMP: -Increased protective buffers along streams found within cutblocks and in croplands -Restrictions of livestock from streams through off-stream watering and salting -Accelerated reclamation of unvegetated trails that are not part of the designated trail network Issue: Reduced Water Quality caused by human waste BMP: -Provision of sanitation facilities at trail heads and designated campsites Installment of advanced septic field technologies at rural residential sites Relative to the “business-as-usual” simulations, the simulated adoption of beneficial management practices in the Ghost River Watershed improved all ecological indicators. Landscape level improvements in ecological indicators included a decrease in Grizzly Bear Mortality index, an increase in the Index of Native Fish Integrity, an improvement in water quality, an increase in recreation potential of the watershed, and a level of forest harvest that is more likely to be sustainable. The results of this study highlight the significant opportunities to government agencies, land use sectors, and various recreational groups, to minimize loss of ecological goods and services and improve the sustainability of the Ghost River Watershed. Justification for adopting these practices are equally defensible from social, economic, and ecological perspectives. This work by the Ghost River Watershed Alliance Society is intended to catalyze a new conversation about sustainable management of the Ghost River watershed based on full cost accounting of a comprehensive list of performance indicators. The take-home message of this project is decidedly pro-landuse, but one in which land-use decisions functionally “optimize” (not maximize) a full suite of socio-economic and ecological indicators. Although this Phase II report is written with the intent that it is a stand-alone document, stakeholders are encouraged to read the Phase I report as it contains additional information relating to the business-as-usual scenario.

Contact ALCES for Dr. Brad Stelfox, Cornel Yarmoloy, 2012
2012

Cumulative Effects of Overlapping Land Uses of the Cold Lake First Nations

Dr. Brad Stelfox, Cornel Yarmoloy

The Cold Lake First Nations (CLFN) ALCES project described in this report was triggered by one of the most recent applications among a long series of past heavy oil and oilsand projects. The OSUM Taiga project is not necessarily unusual in technology, scale, or scope. It is but one example of many that have preceded it, and one of dozens to hundreds of projects that will emerge on the CLFN traditional lands in decades to come. What is unique about the OSUM project, however, is that it is directly adjacent to undeveloped reserve lands obtained as part of the CLAWR compensation settlement, to Cold Lake Provincial Park, and to Cold Lake itself. The proposed development footprint will degrade one of the last vestiges of relatively intact boreal landscape (described as “Awne” or “ąne”) easily accessible to CLFN which remains south of the CLAWR and north of the agricultural lands. Like many stories dealing with aboriginal culture and modern land-use, this one is neither simple nor linear. It involves a First Nations whose landscape has changed rapidly, who continue to aspire to maintain a culturally rich ability to participate in traditional activities (hunting, fishing, trapping, gathering), but also recognize the need to embrace components of Alberta’s contemporary economies and society. This community has growing anxiety about the integrity of their Traditional Territory. Ultimately, CLFN argue they deserve a meaningful conversation about their destiny based upon a scientifically credible and realistic examination of the existing state of cumulative impacts upon their Traditional Territory. CLFN is also mindful of the probability of significantly more encroachment in the future. With this in mind, the CLFN have commissioned the CLFN ALCES project to determine the ecological, economic, social and cultural impacts of current and future oil extraction. This report presents results of the CLFN ALCES® land-use scenario modelling for the Cold Lake First Nations Study Area (CLFN SA), which has been completed at the request of the Cold Lake First Nations (CLFN). It uses the ALCES® landscape cumulative effects simulation model (www.alces.ca) to examine and understand the collective impact of the region’s growing population, residential, agriculture, oil, military, park, and transportation sector footprints, and to account for the historic, current and future growth trends in population and industrial activities. By tracking the impact of plausible future growth scenarios (currently driven by the energy sector) on leading indicators such as water quality and demand, employment, air emissions, and wildlife habitat, the ALCES® model can determine the potential economic, social and ecological outcomes of each growth scenario. The model also investigates the relative influence of important natural processes, such as fire, on ecological indicators. The results of each landscape simulation are presented at multiple spatial scales, and include CLFN Traditional Territory, CLFN SA (Alberta side only; hereafter referred to as CLFN SA), specific sub regions (CLAWR, north of CLAWR, agricultural white area, region south of CLAWR and north of White Area, and AWNE (ąne)), and for quarter township (5 x 5 km) grid maps.

Contact ALCES for Dr. Brad Stelfox, Cornel Yarmoloy, 2012
2011

Powerpoint Presentation: An Assessment of the Cumulative Effects of Land Uses in the Ghost River Watershed, Alberta - Presentation

Cornel Yarmoloy and Brad Stelfox

Refer to report under same name.

Contact ALCES for Cornel Yarmoloy and Brad Stelfox, 2011
2011

Upper Bow River Basin Cumulative Effects Study - Brochure

Terry Antoniuk and Cornel Yarmoloy

The Upper Bow River Basin Cumulative Effects Study (UBBCES) was initiated by concerned citizens, groups, and organizations to investigate and better understand the potential cumulative effects that all land-uses could have on water availability, water quality, and other natural values in the Upper Bow River basin. The Steering Committee directing this study identified five primary concerns about social and environmental health and, in consultation with the authors, selected seven ecological and social indicators to represent these concerns. 
 Issue / Concern Indicator(s) Will there be enough water to meet the future needs of industry, acreages, Calgary residents, ranchers, farmers, and fish? - Surface water flow in Bow River at Carseland Weir reported as yearly total flow (in cubic metres). Will our children and grandchildren be able to rely on the Bow River and its tributaries for clean drinking water? - Relative Water Quality Index at Carseland Weir reported as value of combined nitrogen, phosphorus, and sediment load relative to simulated non-industrial (natural) conditions. - Index of Native Foothills Fish Integrity reported as community health value relative to simulated non-industrial (natural) conditions. Will groundwater levels remain stable, decline, or increase? - Shallow groundwater supply reported as total volume at year end (in cubic metres). Will working farms and ranches remain? - Agricultural land area reported as ha in cropland, forage, and pasture. Will there be undisturbed natural areas that supply clean water and provide places in which our children and grandchildren can visit, hike, bike, and watch wildlife? - Unroaded 'natural' areas reported as areas greater than 200 m from linear corridors and man- made clearings. - Grizzly Bear Mortality Index reported as relative risk of bear death compared to simulated non-industrial (natural) conditions. The ALCES landscape cumulative effects (A Landscape Cumulative Effects Simulator) dynamic landscape model was used for this study to forecast the response of the seven indicators to different development approaches. Work was conducted in two phases. In Phase 1, relevant information was collected and the ALCES model was used to forecast potential outcomes of a ‘business as usual’ scenario. For Phase 2, the model was used to evaluate the potential benefits of applying ‘best practices’ identified by the Calgary Metropolitan Plan and Southern Foothills Study. Today, the Upper Bow River watershed is the most densely populated river basin in the province and the once wild, free flowing Upper Bow River has become the province's most controlled river with numerous dams and water diversions. These changes have allowed the region to prosper, but have created unplanned and unexpected effects on water quality, groundwater, wildlife, fish, and natural areas. The agriculture, residential, transportation, forestry, and energy sectors are the main human activities that have changed water and wildlife values in the basin over the last century. ALCES Phase 1 simulations suggested that continued population growth and demand for homes and resources will continue to convert agricultural lands and natural areas over the next two generations. Phase 2 best practices simulations identified some practical actions that municipalities, ranchers, resource companies, farmers, acreage owners, and city dwellers can initiate to minimize their direct and indirect effects on the region's waters, wildlife, and quality of life. 
 Surface Water Supply Water demand will increase in the Upper Bow River basin over the next two generations. With increasing water demand, withdrawals are projected to remove about 4% of total yearly flow under average conditions and up to 18% under low flow conditions. This suggests that in there will be enough surface water for all users upstream of the Carseland weir during average flow years. However, flows will become more variable and seasonal shortfalls are likely, particularly during dry years. The largest future demands for surface water come from Calgary and other communities. Phase 2 simulations confirm that domestic water conservation measures proposed by the City of Calgary will reduce average annual surface withdrawals by 1% over the next 70 years, a yearly reduction of about 151 million cubic metres. Continued emphasis on water conservation by other land-use sectors would also reduce risk of future supply shortfalls. The recently developed Bow River Operational Model (AWRI 2010) also suggests that flow manipulation can be used to accommodate future water demand while maintaining minimum flows and without negatively affecting water quality. 
 Water Quality UBBCES Phase 1 and 2 simulations indicate that the agriculture sector is currently the largest source of land-use nutrient and sediment loading in the Upper Bow basin. The residential sector and transportation sector are also relatively large sources of nutrients and sediment that reduce water quality. As land-use increases to support the growing regional population, nutrient and sediment loading will increase over the next 70 years, and further reduce water quality. Full implementation of best practices will be required to achieve the Bow River Basin Council's objective of maintaining or enhancing existing water quality (BRBC 2008). Best practices simulations demonstrate that measures being implemented by, or proposed by, the Calgary Metropolitan Plan and City of Calgary would have substantial benefits. Voluntary stewardship programs such as 'Cows and Fish' and 'Ranchers of the Jumpingpound' are beneficial. If all agricultural operators in the basin adopted best practices identified here, future nutrient and sediment loading would be reduced by as much as 50%, and this would help maintain downstream water quality. Adopting best practices such as maintaining a native vegetation buffer along streams and improving planning of future residential development would benefit water quality, fish, wildlife, and recreational users, and potentially decrease municipal water treatment costs. Other best practices would have local benefits that would also contribute to improved downstream water quality and integrity.
 Groundwater Supply Although data are very limited, computer simulations suggest that we are slowly depleting shallow groundwater in the Upper Bow River basin and that this decline will continue over the next 70 years. This drawdown is happening for two reasons: 1) we are pumping groundwater from wells faster than it is being naturally recharged; and 2) we are building more impervious 'hard' surfaces like roads and communities that reduce the groundwater recharge. The gap between withdrawal and recharge appears to be widening. At a local scale this will likely mean groundwater depletion in many of the more heavily populated rural residential areas and significant planning challenges for municipalities and developers. This could also reduce the amount of water available in the Bow River and its tributaries during winter and summer low flow periods when groundwater inflow into the river is important. While we currently have limited information about this unseen water source, given shallow groundwater's importance for future generations, recommendations to measure and manage it as carefully as we do our surface waters should be implemented. 
 Working Farms and Ranches Projections suggest that working farms and ranches will continue to be lost from the Upper Bow River basin as they are converted to acreage and residential development. The Calgary Metropolitan Plan lays out a new vision for urban and rural growth in the Upper Bow basin. This vision is designed to minimize future human footprint growth by almost 80,000 ha (to 123,100 ha instead of 202,600 ha) by increasing community and commercial density within communities and 'nodes', and protecting sensitive natural areas. UBBCES Phase 2 simulations suggest that just over one quarter of this reduced footprint (21,500 ha) could be retained as working farms and ranches. Natural Areas and Wildlife Relatively undisturbed 'natural' area has declined over the last century to three-quarters of the Upper Bow River basin. UBBCES Phase 1 and 2 projections show that the existing land-use transportation and infrastructure network in the Upper Bow River basin will need to expand substantially. This will reduce undisturbed natural area to just under 60% of the basin in 70 years with business as usual assumptions. The Calgary Metropolitan Plan's vision for reduced urban and rural residential growth would allow an additional 63,900 ha to remain unconverted in 70 years. This would also help maintain foothill and prairie grasslands which are poorly represented in the current protected areas network. Past increases in roads and disturbed area have resulted in documented declines in native fish and grizzly bear abundance, and modelling projections indicate that further declines are likely. Once access has been created, it has been very difficult to restrict public use, so managers lose the ability to fully reclaim corridors and reduce undesirable changes on bears, native fish, and sediment runoff. Phase 2 simulations show that access management to control human use of roads would benefit grizzly bears, native fish and other sensitive species by reducing legal and illegal mortality (an indirect effect of land-use).

Contact ALCES for Terry Antoniuk and Cornel Yarmoloy, 2011
2011

Upper Bow River Basin Cumulative Effects Study - Modeling Report

Terry Antoniuk and Cornel Yarmoloy

The Upper Bow River Basin Cumulative Effects Study (UBBCES) was initiated by concerned citizens, groups, and organizations to investigate and better understand the potential cumulative effects that all land-uses could have on water availability, water quality, and other natural values in the Upper Bow River basin. The Steering Committee directing this study identified five primary concerns about social and environmental health and, in consultation with the authors, selected seven ecological and social indicators to represent these concerns: 1 - Will our children and grandchildren be able to rely on the Bow River and its tributaries for clean drinking water? 2 - Will there be enough water to meet the future needs of industry, acreages, Calgary residents, ranchers, farmers, and fish? 3 - Will there be undisturbed natural areas that supply clean water and provide places in which our children and grandchildren can visit, hike, bike, and watch wildlife? 4 - Will groundwater levels remain stable, decline, or increase? 5 - Will working farms and ranches remain? The ALCES landscape cumulative effects (A Landscape Cumulative Effects Simulator) dynamic landscape model was used for this study to forecast the response of the seven indicators to different development approaches. Work was conducted in two phases. In Phase 1, relevant information was collected and the ALCES model was used to forecast potential outcomes of a ‘business as usual’ scenario. For Phase 2, the model was used to evaluate the potential benefits of applying ‘best practices’ identified by the Calgary Metropolitan Plan and Southern Foothills Study.

Contact ALCES for Terry Antoniuk and Cornel Yarmoloy, 2011
2011

Modeling Rangeland Community Structure in ALCES; Southern Alberta Sustainability Strategy (SASS)

Barry Adams and Brad Stelfox

Rangeland communities are not constant in structure (physiognomy), but change through time as they grow older, or when they are disturbed by various natural processes including fire, drought, and herbivory. Unlike forest communities, rangelands do not have to be reset to the youngest seral stage when they are affected by a natural disturbance. Instead, structural change varies depending on the intensity of the disturbance.

Contact ALCES for Barry Adams and Brad Stelfox, 2011
Projects: 11-20 of 45
< 1 2 3 4 5 >
Items per page: 10 25 50