ALCES Based Project Reports

Year Title (Author, Description) File Download
2006

Southern Alberta Landscapes: Meeting the Challenges Ahead - Export Coefficients for Total Phosphorus, Total Nitrogen and Total Suspended Solids in the Southern Alberta Region - A literature review

Yetunde Jeje

The objectives of the literature review were to: 1) Identify and summarize literature that provide quantitative information on Total Nitrogen (TN), Total Phosphorus (TP) and Total Suspended Solids (TSS) export coefficients in the Southern Alberta region, 2) Identify and summarize literature that provide quantitative information on TN, TP and TSS export coefficients in the following landscape cover categories provided by Alberta Environment: 9 Native Prairie classes, 6 Agriculture classes, 7 Forest Area classes and 4 Miscellaneous (4) classes for input in the ALCES computer simulation model currently under development, 3) Prepare a report that presents a descriptive inventory and analysis of literature including a list of all relevant literature reviewed and abstracts of selected literature appropriately categorized, and provide a discussion of data generated, and 4) Identify and summarize literature that provides quantitative information on TN, TP and TSS export coefficients for Non-native Land Use categories in the Southern Alberta region.

Contact ALCES for Yetunde Jeje, 2006
2007

Seeking a Balance: Assessing the Future Impacts of Conservation and Development in the Mackenzie Watershed

Matt Carlson, Erin Bayne, Brad Stelfox; Canadian Boreal Initiative

This study explored how development of the Mackenzie watershed’s natural resources may transform the region over the next 100 years. Our intention was two-fold. First, at a general level, we sought to increase awareness of the Mackenzie watershed and how impending economic development may alter one of the world’s most intact ecosystems. Second, and more importantly, we evaluated the capacity of the Boreal Forest Conservation Framework to balance economic development with conservation of the watershed’s ecological integrity. To explore the future effects of development to the Mackenzie watershed, land-use simulations were conducted for the AlbertaPacific Forest Management Agreement area (Al-Pac FMA) in northeastern Alberta and a southern portion of the Dehcho Territory (southern Dehcho) in the Northwest Territories. The Al-Pac FMA is one of the most heavily developed portions of this watershed and contains a substantial portion of the Athabasca oil sands, which is the second largest oil deposit in the world. The southern Dehcho is rich in gas deposits but, unlike the Al-Pac FMA, development has been limited to date. Together, these two study areas provided an opportunity to assess and compare development impacts and conservation opportunities in areas where the allocation of natural resources to development is currently high (Al-Pac FMA) and low (southern Dehcho). The effects of development over a 100-year time frame were assessed using the ALCES computer model. ALCES simulated land use in each study area under two development scenarios. A business-as-usual scenario was simulated to explore the effects of expected resource development and conventional conservation strategies. A Boreal Forest Conservation Framework (Framework) scenario was also simulated to explore the effects of an increased conservation effort. In keeping with the Framework, the scenario consisted of increased levels of protection and strategies to mitigate disturbance from resource development. The conservation strategies implemented in the Framework scenario reflected those proposed by Alberta-Pacific Forest Industries and the Dehcho First Nations. In the Al-Pac FMA, the strategies were to increase the area protected from three percent to six percent of the study area, to maintain old forest in the managed landscape, and to minimize the area impacted by industrial disturbances. In the southern Dehcho, the strategies were to increase the area protected from zero to 48 percent of the study area and to minimize the area impacted by industrial disturbances. In both study areas, the business-as-usual scenario resulted in an increased density of linear disturbances and a decreased area of older productive softwood forest. Changes to the density of linear disturbances and area of older productive softwood forest often exceeded disturbance thresholds that have been proposed to protect against negative effects to wildlife, which suggested that business-as-usual development is not sustainable. The conservation strategies that formed the Framework scenario reduced landscape disturbance, often to within the boundaries of disturbance thresholds. In the southern Dehcho, the density of linear disturbances remained below the disturbance threshold and half of the study area was kept free from industrial disturbance. Decline in the area of older productive softwood forest was not avoided because non-productive forest dominated the protected areas, thus illustrating the importance of adequately protecting all forest types. In the Al-Pac FMA, application of the Framework scenario was able to avoid decline in the area of older productive softwood forest. The linear disturbance threshold was exceeded, however, demonstrating that it will be challenging to avoid negative ecological effects of development in the southern Mackenzie watershed. The ecological implications of simulated landscape transformations were evaluated in greater detail by assessing impacts to woodland caribou and bird populations. The assessment was completed using wildlife models based on data collected from northern Alberta. Five bird species were included: the blackthroated green warbler, bay-breasted warbler and Canada warbler, which are species associated with older forest; the ovenbird, which is a species associated with mature forest; and the white-throated sparrow, which is a species associated with younger forest and much more common than the others. Simulations of a business-as-usual scenario predicted that the woodland caribou population would decline in both study areas, indicating that the species is likely to be extirpated unless conservation strategies are improved. In the southern Dehcho, the simulation predicted a 21-percent decline in ovenbird and bay-breasted warbler populations and a 32-percent decline in a

Contact ALCES for Matt Carlson, Erin Bayne, Brad Stelfox; Canadian Boreal Initiative, 2007
2009

Quantifying land use of oil sands production: a life cycle perspective

Sarah M Jordaan, David W Keith, and Brad Stelfox

Methods for the inclusion of land use in life cycle assessment are not well established. Here, we describe an approach that compares land disturbance between spatially compact and diffuse activities that contribute to the life cycle of a single product, in this case synthetic crude from Alberta’s oil sands. We compare production using surface mining and in situ extraction technologies. In situ technologies disturb less land per unit of production than surface mining, but the spatial footprint of in situ production is more dispersed—increasing landscape fragmentation—and in situ production requires more natural gas which increases land use due to gas production. We examine both direct and peripheral land use of oil sands development by quantifying land disturbance using a parameterized measure of fragmentation that relies on ‘edge effects’ with an adjustable buffer zone. Using a life cycle perspective, we show that the land area influenced by in situ technology is comparable to land disturbed by surface mining when fragmentation and upstream natural gas production are considered. The results suggest that land disturbance due to natural gas production can be relatively large per unit energy. This method could be applied to other energy developments, for example, a comparison between coal mining and natural gas production when both fuels are used to generate electricity.

Contact ALCES for Sarah M Jordaan, David W Keith, and Brad Stelfox, 2009
2011

Powerpoint Presentation: An Assessment of the Cumulative Effects of Land Uses in the Ghost River Watershed, Alberta - Presentation

Cornel Yarmoloy and Brad Stelfox

Refer to report under same name.

Contact ALCES for Cornel Yarmoloy and Brad Stelfox, 2011
2011

Phase 1. An Assessment of the Cumulative Effects of Land Uses within the Ghost River Watershed, Alberta - Report

Cornel Yarmoloy and Brad Stelfox

Society is increasingly aware of how our rivers, and the landscapes that support them, deliver not only water, but a suite of societal and ecosystem services which are needed to sustain our quality of life. Eastern Slope watersheds, such as the Ghost, supply diverse recreational needs, timber products, energy resources, support biological diversity and provide ecosystem services such as carbon storage, drinking water and flood control. Human land use development and recreational activities can potentially reduce the effectiveness of these valued services through incremental negative impacts on natural processes. Reductions in the ability of natural systems to provide clean water to downstream communities, such as Calgary, results in an increasing need for water treatment infrastructure and associated monies. Such costs are passed onto consumers through increasing taxes and metered water costs. As demonstrated in other geographies, the significant burden on downstream tax payers for potable drinking water can be reduced through the effective management of headwater areas rather than building and maintaining increasingly larger and more costly water treatment facilities. To support their vision of preserving and enhancing the integrity of the ecosystem functions in the Ghost watershed, the Ghost Watershed Alliance Society (GWAS; www.ghostwatershed.ca) sponsored a quantitative assessment of how past, current and future cumulative impacts of land use on multiple-use forest reserve and private lands within the Ghost-Waiparous watershed could potentially affect sustainability of forests, water, wildlife and recreational resources (Phase 1). The GWAS engaged ALCES Landscape and Land-use Ltd. (ALCES� Group; www.alces.ca) to conduct this initial assessment.

Contact ALCES for Cornel Yarmoloy and Brad Stelfox, 2011
2019

Modelling regional futures at decadal scale: application to the Kimberley region

Fabio Boschetti, Hector Lozano-Montes, J. Brad Stelfox

We address the question of how to provide meaningful scientific information to support environmental decision making at the regional scale and at the temporal scale of several decades. Our application is the management of a network of marine parks in the Kimberley region of Western Australia, where the key challenges to environmental sustainability are slow-dynamics climate change processes and one-off investments in large infrastructure, which can affect the future of a region for decades to come. In this situation, strategic, rather than reactive planning is necessary and thus standard adaptive management approaches may not be effective. Prediction becomes more urgent than adaptation, in terms of assessing the long term consequence of specific economic and conservation decisions. Working at the interface between future studies, socio-economic modelling and environmental modelling, we define 18 scenarios of economic development and climate change impacts and 5 management strategies aimed at ensuring the sustainability of the marine environment. We explore these potential future trajectories using coupled models of terrestrial land use and marine ecosystem dynamics. The Alces model simulates the dynamics of bio-physical and socio-economic processes on land and the pressures these impose on the coastal and marine environment. This forces an Ecopath with Ecosim (EwE) model used to simulate marine processes, foodweb dynamics and human activities in the marine environment. We obtain a projection of the Kimberley marine system to the year 2050, conditional on the chosen scenarios and management strategies, which is compatible with the best available knowledge of the current system state (as codified in the models’ input) and system functioning (as represented in the models’ dynamics). Our results suggest that climate change, not economic development, is the largest factor affecting the future of marine ecosystems in the Kimberley region, with sedentary species such as reef fish at greatest risk. These same species also benefit most from more stringent management strategies, especially expansion of sanctuary zones and Marine Protected Areas.

Contact ALCES for Fabio Boschetti, Hector Lozano-Montes, J. Brad Stelfox, 2019
2016

Modelling Ecosystem Carbon Dynamics in Alberta: An Integrative Approach

Rider, N., M. Carlson, and B. Stelfox

Rider, N., M. Carlson, and B. Stelfox. 2016. Modelling Ecosystem Carbon Dynamics in Alberta: An Integrative Approach. ALCES Group Report. The report describes the application the ALCES Online landscape simulator to examine the effect of past, present, and potential future land use and natural disturbance on ecosystem carbon storage in Alberta, Canada. Introduction Fluxes of carbon (and other greenhouse gases) between terrestrial ecosystems and the atmosphere are important drivers and mitigators of global warming (Heimann & Reichstein, 2008). Consequently, understanding ecosystem carbon dynamics and how land use and land use change affect them is becoming considered increasingly important. Since 2003, the Intergovernmental Panel on Climate Change (IPCC) has accepted greenhouse gas (GHG) inventory reports from many major nations (IPCC, 2015). Internationally binding agreements including the United Nations Framework Convention on Climate Change ensure that countries monitor their greenhouse gas emissions. Land use and land use change (LULUC) are increasingly recognized as integral to global carbon budgets (Guo & Gifford, 2002; Kaplan, Krumhardt, & Zimmermann, 2012; Macedo & Davidson, 2014). Every year, Canada submits a National Inventory Report documenting emissions from land use and land use change as well as from commercial and industrial activities to the IPCC (Environment Canada, 2015b). Each National Inventory Report includes emission trends from the energy sector, industries and product use, agriculture, waste, and LULUC. Since the IPCC is primarily interested in emissions and emissions factors, the report does not specifically document existing carbon stocks in biomass or other pools. The current report expands research on carbon emissions by providing information on existing biomass and organic carbon stocks in Alberta. Additionally, it provides forecasts and backcasts for biomass and organic carbon based on a landuse dataset which documents historical LULUC as well as future LULUC. ALBERTA The province of Alberta is located in Western Canada. In 2014, the population of Alberta totalled 4.1 million (Alberta Finance, 2015). This number is expected to increase by around 50 % by 2041. This increase will create substantial demand for goods, services, and infrastructure which will undoubtedly lead to changes in land use and alter emissions patterns. Alberta is also home to a large energy sector which has nearly half a million kilometres of pipelines and nine oil sands developments (Alberta Energy Regulator, 2015). It is important for the Alberta Government to have decision-making tools which can inform land use decisions while taking into account multiple factors. The Alberta Government is currently developing regional plans to help manage multiple uses on the landscape (Alberta Environment and Parks, 2015). Information about how LULUC and ecosystem carbon storage are related should be considered by governments during local, regional, and national planning. GENERAL APPROACH The current project integrates existing ALCES data (which was originally obtained from a variety of sources), values from the primary literature, and other available information to determine best estimates of ecosystem carbon stocks. In general, with the exception of forests, peatlands, and wetlands, carbon stocks were divided into three categories - aboveground biomass, belowground biomass, and soil organic carbon (SOC). All carbon stocks were dependent on land uses and land use changes. For Alberta’s forest area, dead wood and litter biomass were also considered to be important stock categories. For peatlands and wetlands, it is difficult to distinguish between belowground biomass and soil organic carbon, so these were lumped together into a single category, belowground carbon. The approach used differed slightly depending on specific cover types. An online tool, ALCES Online, was used to present the data and generate all maps in this report. ALCES Online uses a raster data format with a resolution of 2.5 km. Existing biomass values for natural areas were determined either from relationships to other variables from the primary literature, measured values summarized in primary literature, measured values provided by government agencies, or values predicted by a model. To determine biomass and carbon stocks for anthropogenic features, the general approach was to determine a base carbon density in a given cell based on the carbon in natural features, croplands, and pastures (Equation 1). This base carbon value included area-weighted carbon values for all natural features, croplands, and pastures. To determine what the carbon value of an anthropogenic feature in a cell was, the base carbon value was divided by the area which it represented (the total natural, crop, and pasture area), and then multiplied by a loss coefficient associated with the anthropogenic feature in question, followed by the area of the anthropogenic feature (Equation 2; α = coefficient). The sum of base carbon of a given type and all carbon associated with anthropogenic features of a given type yielded the total carbon of a given type in a given cell (Equation 3). The sum of all types of carbon in a cell yields a total ecosystem carbon value for that cell (Equation 4). As was previously mentioned, litter and deadwood carbon values only existed for forest. Since croplands and pastures are more similar to natural features in terms of how anthropogenic features impact their carbon storage, croplands and pastures were included in the base carbon stocks in the aforementioned approach. The next section (Approach by Footprint) documents how values were determined for existing biomass or soil organic carbon and how the different anthropogenic feature carbon was accounted for. The approach described above was the most common one; however, in a few specific cases, as described in the following sections, the coefficient approach was not used to determine the carbon associated with an anthropogenic feature. Integral to the approach used was the Unity Dataset, which exists in ALCES Online (see The Unity Dataset).

Contact ALCES for Rider, N., M. Carlson, and B. Stelfox, 2016
2011

Modeling Rangeland Community Structure in ALCES; Southern Alberta Sustainability Strategy (SASS)

Barry Adams and Brad Stelfox

Rangeland communities are not constant in structure (physiognomy), but change through time as they grow older, or when they are disturbed by various natural processes including fire, drought, and herbivory. Unlike forest communities, rangelands do not have to be reset to the youngest seral stage when they are affected by a natural disturbance. Instead, structural change varies depending on the intensity of the disturbance.

Contact ALCES for Barry Adams and Brad Stelfox, 2011
2005

Looking Ahead: An Assessment of Potential Land Use Trends in Strathcona County

Daniel Farr and Brad Stelfox

Strathcona County is a unique municipality located northeast of Edmonton in Alberta's Capital Region. The juxtaposition of urban and rural areas governed by a single municipality has created an economically and culturally diverse community. It includes the hamlet of Sherwood Park, plus eight smaller hamlets, 900 farms and numerous country residential developments. Historically an agricultural-dominated area, the economic base of the region has evolved to include oil refineries, manufacturing and other heavy industry, and diverse retail and commercial operations. The County is strongly influenced by its proximity to the City of Edmonton, which is the commercial and transportation hub of northern Alberta. Edmonton provides numerous economic opportunities for Strathcona County businesses, and County residents frequently travel to and from Edmonton for work, recreation, health care, and a wide range of other metropolitan services. In turn, the County is also a destination for many Edmonton residents seeking a range of recreational and other activities. Steady growth in the urban and rural population, and a desire to grow and diversify the economy while maintaining traditional land uses such as agriculture, make it challenging to plan future land use development. The purpose of this study is to assess competing land uses and the cumulative effects of land use planning decisions in and around Strathcona County. A modeling approach is used to forecast

Contact ALCES for Daniel Farr and Brad Stelfox, 2005
2015

Landscape Impacts of Hydraulic Fracturing Development and Operations on Surface Water and Watersheds

Multiple

Quinn, M.S., M.E. Tyler, E. Ajaero, J. Arvai, M. Carlson, I. Dunmade, S. Hill, J. McCallum, D. McMartin, D. Megson, G. O’Sullivan, R. Parks, D. Poulton, B. Stelfox, J. Stewart, C. Serralde Monreal, S. Tomblin, C. Van der Byl. 2015. Landscape Impacts of Hydraulic Fracturing Development and Operations on Surface Water and Watersheds. Prepared for the Canadian Water Network. Institute for Environmental Sustainability, Mount Royal University, Calgary, AB. The study explores landscape and watershed impacts of hydraulic fracturing using a multi‐disciplinary social and natural science framework. The primary learning from our multidisciplinary approach is the need for greater institutional opportunities to integrate and coordinate a spectrum of approaches to address knowledge gaps in multiple system interactions across scales and involving system threshold effects that may be social in nature as well as biogeochemical. There is a lack of operational precedents in Canada for applying a cumulative effects approach to assessment of regional gas extraction from low permeability unconventional formations using horizontal wells with multistage hydraulic fracturing. A demonstration case study was developed for this report and fully presented in Appendix A. The purpose of the case study was to demonstrate how a simulation model (ALCES Online), in conjunction with an RSEA approach, could inform regional management of hydraulic fracturing by identifying risk and mitigation opportunities. The simulation outcomes were sensitive to uncertainties, emphasizing the importance of improved understanding of hydraulic fracturing’s impacts.

Contact ALCES for Multiple, 2015
Projects: 11-20 of 45
< 1 2 3 4 5 >
Items per page: 10 25 50