ALCES Based Project Reports

Year Title (Author, Description) File Download

Final UBBCES Natural Capital Report

Brad Stelfox, Matt Carlson, ALCES

Temporal and Spatial Changes in the Natural Capital of the Upper Bow River Basin, Alberta, Canada. This report summarizes key findings of the Upper Bow River Basin Natural Capital Study – a project tasked with quantifying the current condition, historical changes, and future projections in natural capital for the Upper Bow River Basin, Alberta. These findings are intended to inform and assist land use decisionemakers required to devise regional plans that consider natural capital tradeeoffs.

Contact ALCES for Brad Stelfox, Matt Carlson, ALCES, 2014

Ghost River Watershed Cumulative Effects Study

Dr. Brad Stelfox, Cornel Yarmoloy

The watershed of the Ghost River lies in the upstream shadow of the burgeoning metropolis of Calgary and its surrounding bedroom communities. The Ghost River watershed possesses an exceptional abundance of natural resources, including forests, grasslands, rivers, diverse flora and fauna, and majestic scenery. It also hosts an abundance of consumptive natural resources including wood fiber, livestock forage, hydrocarbons, and wildlife and fish. During recent decades, a rapid increase in intensity of several landuses has occurred, as forestry, livestock grazing, oil and gas extraction, rural residential, hunting, and non-motorized and motorized recreation have all grown to satisfy increasing regional demand. The historical management paradigm of the Government of Alberta for the East Slopes is best described as “multiple use”. This strategy reflects the belief that multiple overlapping land uses can co-occur without meaningfully compromising the performance of key ecological, social, and economic indicators. Increasingly, quantitative and subjective assessments by the scientific community and the public have shown that the laissez-faire nature of the government’s “multiple use” formula is no longer serving society well. In 2011, a Phase 1 report examining the cumulative effects of “business-as-usual” land uses within the Ghost River watershed identified a number of challenges to maintaining acceptable performance levels of ecological, industrial, and recreation indicators. Projections using the ALCES landscape simulator ( quantified past and potential future declines in water quality, recreation potential, fish and wildlife indicators, and problems with sustainable forestry. The Phase I report can be downloaded from The Ghost River Watershed Alliance Society received funding from the Alberta Ecotrust Foundation and the Calgary Foundation to explore and assess beneficial management practices (BMP) that have the potential to improve performance of indicators relative to the business-as-usual (BAU) practices explored in Phase 1. Through a series of four independently facilitated workshops, the GWAS sought to engage local and regional communities, recreationalists, and government representatives in exploring potential solutions to enhance sustainable land stewardship for the watershed. Information obtained from these workshops was augmented with data obtained from other relevant projects examining the interface between BMP and ecological goods and services in Alberta’s east slopes. Based on guidance obtained from BMP workshops and other studies (Southern Foothills Study, Upper Bow Basin Cumulative Effects Study, South Saskatchewan Regional Plan), the following issues and BMP were explored for the Ghost River Study: Issue: High level of landscape fragmentation BMP: -Accelerated rates of reclamation of linear features such as seismic lines, minor roads, inblock forestry roads, and non-designated off-highway vehicle trails Issue: High levels of vehicle accessibility BMP: -Restriction of off-highway vehicle (OHV) activity to an engineered and designated OHV trail system that minimizes adverse effects on erosion and wildlife and provides safe and enjoyable OHV activity. -Enforcement increased to minimize off-highway vehicle use on non-designated trails and contain use to a designated vehicle trail network Issue: High Level of Watershed Discontinuity BMP: Increased replacement of “washed out” or “hung” stream culverts Issue: Loss of Riparian Habitat, Forest Structure, Wood Security BMP: -Reduction of current annual allowable forestry harvest commensurate with increased in-block retention of trees, and increased buffers along watercourses and ephemeral streams Issue: Reduced Water Quality from Elevated Nutrient Runoff BMP: -Increased protective buffers along streams found within cutblocks and in croplands -Restrictions of livestock from streams through off-stream watering and salting -Accelerated reclamation of unvegetated trails that are not part of the designated trail network Issue: Reduced Water Quality caused by human waste BMP: -Provision of sanitation facilities at trail heads and designated campsites Installment of advanced septic field technologies at rural residential sites Relative to the “business-as-usual” simulations, the simulated adoption of beneficial management practices in the Ghost River Watershed improved all ecological indicators. Landscape level improvements in ecological indicators included a decrease in Grizzly Bear Mortality index, an increase in the Index of Native Fish Integrity, an improvement in water quality, an increase in recreation potential of the watershed, and a level of forest harvest that is more likely to be sustainable. The results of this study highlight the significant opportunities to government agencies, land use sectors, and various recreational groups, to minimize loss of ecological goods and services and improve the sustainability of the Ghost River Watershed. Justification for adopting these practices are equally defensible from social, economic, and ecological perspectives. This work by the Ghost River Watershed Alliance Society is intended to catalyze a new conversation about sustainable management of the Ghost River watershed based on full cost accounting of a comprehensive list of performance indicators. The take-home message of this project is decidedly pro-landuse, but one in which land-use decisions functionally “optimize” (not maximize) a full suite of socio-economic and ecological indicators. Although this Phase II report is written with the intent that it is a stand-alone document, stakeholders are encouraged to read the Phase I report as it contains additional information relating to the business-as-usual scenario.

Contact ALCES for Dr. Brad Stelfox, Cornel Yarmoloy, 2012

Grizzly Bear Habitat Selection and Mortality Coefficients of Southern Alberta: Estimates for the Southern Alberta Regional Strategy (SARS)-ALCES Project

Scott Nielsen and Mark Boyce

Southern Alberta has witnessed substantial recent growth in local human population concurrent with an increasing demand on natural resources. This growth is expected to continue for the foreseeable future. A Southern Alberta Region Strategy (SARS) was formed to address potential economic and ecological benefits and/or impacts of projected regional change. To examine these relationships in a quantitative and structured manner, SARS settled on the use of A Landscape Cumulative Effects Simulator (ALCES). One resource sector outlined in SARS and modeled in ALCES is wildlife, with grizzly bears (Ursus arctos L.) chosen as one focal conservation species for the process. Grizzly bears are a species of special concern in Alberta, currently considered 'may be at risk'. For the ALCES modeling process, information on habitat relationships or habitat suitability indices (HSI) are required. In this report we describe the results of empirical modeling exercises undertaken to provide coefficients of habitat selection and mortality. We further provide suggestions for incorporating the two indices into a single synthetic index we refer to as exposure.

Contact ALCES for Scott Nielsen and Mark Boyce, 2003

In Situ Oil Sands Footprint Monitoring Project

Antoniuk, T., Manuel,, M., Sutherland, M., and Bowen, J.

Prepared for Alberta Environment Land Monitoring Team Stakeholders and regulators have become increasingly concerned about the cumulative impact of existing and future in situ oil sands operations on ecosystem health and reclamation success in the Lakeland Industrial and Community Association (LICA) region. To respond to these concerns, Alberta Environment (AENV) commissioned a pilot project to develop a terrestrial footprint monitoring protocol for the LICA region. The In situ Footprint Monitoring Project (the In situ project) was completed by the ALCES Group in association with InfoJim Inc. The intent of the project was to establish a foundation for ongoing monitoring of the in situ development footprint that would ultimately assist stakeholders and regulators in responsible land management and sustainable development. Specific objectives defined by AENV were: 1. Develop an indicator-based approach and protocol to assess landscape features and evaluate land disturbances and reclamation progress over time, utilizing spatial information at an appropriate scale to enable comprehensive evaluation of cumulative land disturbances. 2. Using the developed protocol – identify, monitor, and map the cumulative land footprint associated with in situ activities for the selected area between 1980 and 2007, and to enable periodic updates after 2007.

Contact ALCES for Antoniuk, T., Manuel,, M., Sutherland, M., and Bowen, J., 2008

Knowledge Integration and Management Strategy Evaluation (MSE) Modelling

Fabio Boschetti, Hector Lozano-Montes, Brad Stelfox, Catherine Bulman, Joanna Strzelecki, Michael Hu

Knowledge Integration and Management Strategy Evaluation (MSE) Modelling report. Prepared for the WAMSI Kimberley Marine Research Program Final Report. The Kimberley Marine Research Program (KMRP) Project 2.2.8 represents the first attempt to integrate a large amount of data, knowledge and state-of-the-art understanding of the bio-physical, ecological and social processes affecting the Kimberley marine environment drawing in new information generated by several of the KMRP projects within the Western Australian Marine Science Institution (WAMSI) program. This information was used to parameterise two computer models (ALCES and Ecopath with Ecosim [EwE]) to simulate land, coastal and marine processes. A careful examination of a large volume of publications from the academic, private and public sectors allowed a number of climate and social economic development scenarios that the Kimberley region may experience in the decades to come to be developed. Computer simulations were used to test the Kimberley system’s responses to these alternative scenarios under a number of management strategies including current and proposed marine parks under different options of zoning and multiple uses. Both the scenarios and management strategies were selected and agreed upon in consultation with a number of stakeholder groups, including the Department of Biodiversity, Conservation and Attractions (formerly Department of Parks and Wildlife), The Kimberley Development Commission, WA Department of State Development, Department of Primary Industries and Resources (formerly Department of Fisheries), Department of Mine, Industry Regulation and Safety (formerly WA Department of Mines and Petroleum), among others. The analysis of the impacts of these scenarios and management strategies sheds light on a range of future states the Kimberley marine environment may experience during the 2015 to 2050 period. Before the core results are summarised, it is important to remind the reader that a model simulation is not an absolute prediction (a ‘prophecy’) of how the Kimberley region will look in 2050. Rather, it is an attempt to say something of decision-making significance about how the system may respond to the specific conditions summarised in the scenarios and management strategies, which is consistent with our current scientific knowledge and our current understanding of how the Kimberley system functions. It follows that while insight on system behaviour gained from consideration of these scenarios can provide guidance on potential patterns of responses, care must be taken when considering circumstances outside the specifics of the scenarios and management strategies modelled and particular account must be made of the uncertainty in our current knowledge. The outcome of this project is a very large set of simulation outputs representing the dynamical evolution of the land, coastal and marine environments over 35 years. This includes hundreds of regional maps and thousands of time series of environmental, social and economic indicators. All these results are now publically available and can be viewed at

Contact ALCES for Fabio Boschetti, Hector Lozano-Montes, Brad Stelfox, Catherine Bulman, Joanna Strzelecki, Michael Hu, 2017

Landscape Impacts of Hydraulic Fracturing Development and Operations on Surface Water and Watersheds


Quinn, M.S., M.E. Tyler, E. Ajaero, J. Arvai, M. Carlson, I. Dunmade, S. Hill, J. McCallum, D. McMartin, D. Megson, G. O’Sullivan, R. Parks, D. Poulton, B. Stelfox, J. Stewart, C. Serralde Monreal, S. Tomblin, C. Van der Byl. 2015. Landscape Impacts of Hydraulic Fracturing Development and Operations on Surface Water and Watersheds. Prepared for the Canadian Water Network. Institute for Environmental Sustainability, Mount Royal University, Calgary, AB. The study explores landscape and watershed impacts of hydraulic fracturing using a multi‐disciplinary social and natural science framework. The primary learning from our multidisciplinary approach is the need for greater institutional opportunities to integrate and coordinate a spectrum of approaches to address knowledge gaps in multiple system interactions across scales and involving system threshold effects that may be social in nature as well as biogeochemical. There is a lack of operational precedents in Canada for applying a cumulative effects approach to assessment of regional gas extraction from low permeability unconventional formations using horizontal wells with multistage hydraulic fracturing. A demonstration case study was developed for this report and fully presented in Appendix A. The purpose of the case study was to demonstrate how a simulation model (ALCES Online), in conjunction with an RSEA approach, could inform regional management of hydraulic fracturing by identifying risk and mitigation opportunities. The simulation outcomes were sensitive to uncertainties, emphasizing the importance of improved understanding of hydraulic fracturing’s impacts.

Contact ALCES for Multiple, 2015

Looking Ahead: An Assessment of Potential Land Use Trends in Strathcona County

Daniel Farr and Brad Stelfox

Strathcona County is a unique municipality located northeast of Edmonton in Alberta's Capital Region. The juxtaposition of urban and rural areas governed by a single municipality has created an economically and culturally diverse community. It includes the hamlet of Sherwood Park, plus eight smaller hamlets, 900 farms and numerous country residential developments. Historically an agricultural-dominated area, the economic base of the region has evolved to include oil refineries, manufacturing and other heavy industry, and diverse retail and commercial operations. The County is strongly influenced by its proximity to the City of Edmonton, which is the commercial and transportation hub of northern Alberta. Edmonton provides numerous economic opportunities for Strathcona County businesses, and County residents frequently travel to and from Edmonton for work, recreation, health care, and a wide range of other metropolitan services. In turn, the County is also a destination for many Edmonton residents seeking a range of recreational and other activities. Steady growth in the urban and rural population, and a desire to grow and diversify the economy while maintaining traditional land uses such as agriculture, make it challenging to plan future land use development. The purpose of this study is to assess competing land uses and the cumulative effects of land use planning decisions in and around Strathcona County. A modeling approach is used to forecast

Contact ALCES for Daniel Farr and Brad Stelfox, 2005

Modeling Rangeland Community Structure in ALCES; Southern Alberta Sustainability Strategy (SASS)

Barry Adams and Brad Stelfox

Rangeland communities are not constant in structure (physiognomy), but change through time as they grow older, or when they are disturbed by various natural processes including fire, drought, and herbivory. Unlike forest communities, rangelands do not have to be reset to the youngest seral stage when they are affected by a natural disturbance. Instead, structural change varies depending on the intensity of the disturbance.

Contact ALCES for Barry Adams and Brad Stelfox, 2011

Modelling Ecosystem Carbon Dynamics in Alberta: An Integrative Approach

Rider, N., M. Carlson, and B. Stelfox

Rider, N., M. Carlson, and B. Stelfox. 2016. Modelling Ecosystem Carbon Dynamics in Alberta: An Integrative Approach. ALCES Group Report. The report describes the application the ALCES Online landscape simulator to examine the effect of past, present, and potential future land use and natural disturbance on ecosystem carbon storage in Alberta, Canada. Introduction Fluxes of carbon (and other greenhouse gases) between terrestrial ecosystems and the atmosphere are important drivers and mitigators of global warming (Heimann & Reichstein, 2008). Consequently, understanding ecosystem carbon dynamics and how land use and land use change affect them is becoming considered increasingly important. Since 2003, the Intergovernmental Panel on Climate Change (IPCC) has accepted greenhouse gas (GHG) inventory reports from many major nations (IPCC, 2015). Internationally binding agreements including the United Nations Framework Convention on Climate Change ensure that countries monitor their greenhouse gas emissions. Land use and land use change (LULUC) are increasingly recognized as integral to global carbon budgets (Guo & Gifford, 2002; Kaplan, Krumhardt, & Zimmermann, 2012; Macedo & Davidson, 2014). Every year, Canada submits a National Inventory Report documenting emissions from land use and land use change as well as from commercial and industrial activities to the IPCC (Environment Canada, 2015b). Each National Inventory Report includes emission trends from the energy sector, industries and product use, agriculture, waste, and LULUC. Since the IPCC is primarily interested in emissions and emissions factors, the report does not specifically document existing carbon stocks in biomass or other pools. The current report expands research on carbon emissions by providing information on existing biomass and organic carbon stocks in Alberta. Additionally, it provides forecasts and backcasts for biomass and organic carbon based on a landuse dataset which documents historical LULUC as well as future LULUC. ALBERTA The province of Alberta is located in Western Canada. In 2014, the population of Alberta totalled 4.1 million (Alberta Finance, 2015). This number is expected to increase by around 50 % by 2041. This increase will create substantial demand for goods, services, and infrastructure which will undoubtedly lead to changes in land use and alter emissions patterns. Alberta is also home to a large energy sector which has nearly half a million kilometres of pipelines and nine oil sands developments (Alberta Energy Regulator, 2015). It is important for the Alberta Government to have decision-making tools which can inform land use decisions while taking into account multiple factors. The Alberta Government is currently developing regional plans to help manage multiple uses on the landscape (Alberta Environment and Parks, 2015). Information about how LULUC and ecosystem carbon storage are related should be considered by governments during local, regional, and national planning. GENERAL APPROACH The current project integrates existing ALCES data (which was originally obtained from a variety of sources), values from the primary literature, and other available information to determine best estimates of ecosystem carbon stocks. In general, with the exception of forests, peatlands, and wetlands, carbon stocks were divided into three categories - aboveground biomass, belowground biomass, and soil organic carbon (SOC). All carbon stocks were dependent on land uses and land use changes. For Alberta’s forest area, dead wood and litter biomass were also considered to be important stock categories. For peatlands and wetlands, it is difficult to distinguish between belowground biomass and soil organic carbon, so these were lumped together into a single category, belowground carbon. The approach used differed slightly depending on specific cover types. An online tool, ALCES Online, was used to present the data and generate all maps in this report. ALCES Online uses a raster data format with a resolution of 2.5 km. Existing biomass values for natural areas were determined either from relationships to other variables from the primary literature, measured values summarized in primary literature, measured values provided by government agencies, or values predicted by a model. To determine biomass and carbon stocks for anthropogenic features, the general approach was to determine a base carbon density in a given cell based on the carbon in natural features, croplands, and pastures (Equation 1). This base carbon value included area-weighted carbon values for all natural features, croplands, and pastures. To determine what the carbon value of an anthropogenic feature in a cell was, the base carbon value was divided by the area which it represented (the total natural, crop, and pasture area), and then multiplied by a loss coefficient associated with the anthropogenic feature in question, followed by the area of the anthropogenic feature (Equation 2; α = coefficient). The sum of base carbon of a given type and all carbon associated with anthropogenic features of a given type yielded the total carbon of a given type in a given cell (Equation 3). The sum of all types of carbon in a cell yields a total ecosystem carbon value for that cell (Equation 4). As was previously mentioned, litter and deadwood carbon values only existed for forest. Since croplands and pastures are more similar to natural features in terms of how anthropogenic features impact their carbon storage, croplands and pastures were included in the base carbon stocks in the aforementioned approach. The next section (Approach by Footprint) documents how values were determined for existing biomass or soil organic carbon and how the different anthropogenic feature carbon was accounted for. The approach described above was the most common one; however, in a few specific cases, as described in the following sections, the coefficient approach was not used to determine the carbon associated with an anthropogenic feature. Integral to the approach used was the Unity Dataset, which exists in ALCES Online (see The Unity Dataset).

Contact ALCES for Rider, N., M. Carlson, and B. Stelfox, 2016

Modelling regional futures at decadal scale: application to the Kimberley region

Fabio Boschetti, Hector Lozano-Montes, J. Brad Stelfox

We address the question of how to provide meaningful scientific information to support environmental decision making at the regional scale and at the temporal scale of several decades. Our application is the management of a network of marine parks in the Kimberley region of Western Australia, where the key challenges to environmental sustainability are slow-dynamics climate change processes and one-off investments in large infrastructure, which can affect the future of a region for decades to come. In this situation, strategic, rather than reactive planning is necessary and thus standard adaptive management approaches may not be effective. Prediction becomes more urgent than adaptation, in terms of assessing the long term consequence of specific economic and conservation decisions. Working at the interface between future studies, socio-economic modelling and environmental modelling, we define 18 scenarios of economic development and climate change impacts and 5 management strategies aimed at ensuring the sustainability of the marine environment. We explore these potential future trajectories using coupled models of terrestrial land use and marine ecosystem dynamics. The Alces model simulates the dynamics of bio-physical and socio-economic processes on land and the pressures these impose on the coastal and marine environment. This forces an Ecopath with Ecosim (EwE) model used to simulate marine processes, foodweb dynamics and human activities in the marine environment. We obtain a projection of the Kimberley marine system to the year 2050, conditional on the chosen scenarios and management strategies, which is compatible with the best available knowledge of the current system state (as codified in the models’ input) and system functioning (as represented in the models’ dynamics). Our results suggest that climate change, not economic development, is the largest factor affecting the future of marine ecosystems in the Kimberley region, with sedentary species such as reef fish at greatest risk. These same species also benefit most from more stringent management strategies, especially expansion of sanctuary zones and Marine Protected Areas.

Contact ALCES for Fabio Boschetti, Hector Lozano-Montes, J. Brad Stelfox, 2019
Projects: 21-30 of 45
< 1 2 3 4 5 >
Items per page: 10 25 50