ALCES Based Project Reports

Year Title (Author, Description) File Download
2008

Alberta Southern East Slopes Integrated Land Management Pilot Project (draft)

Brad Stelfox, Mark Anielski, Matt Carlson and Terry Antoniuk

The Southern East Slopes Integrated Land Management Pilot Project (SES Pilot) used a real landscape and real data from southwest Alberta to evaluate how selected ecological and economic ‘performance’ outcomes could be achieved through different land management scenarios and how such integrated evaluations might be of use for policy analysis, economic trade-off analysis, and land use decision making. Economic and ecological indicators were developed using an integrated Genuine Wealth Accounting system (i.e. integration of natural, financial, and social capital accounts) to account for the physical and qualitative conditions and the monetary value, where possible, of key ecological assets, including water, carbon, and land. These indicators were then used to simulate potential trade-offs among market and non-market resource values using the ALCES© model, including the influence of pre-defined land management objectives on these indicators.

Contact ALCES for Brad Stelfox, Mark Anielski, Matt Carlson and Terry Antoniuk, 2008
2009

Alberta Caribou Committee Recommendations to the Deputy Minister of Sustainable Resource Development for the Athabasca Caribou Landscape

Athabasca Landscape Team

Alberta Caribou Committee Recommendations to the Deputy Minister of Sustainable Resource Development for the Athabasca Caribou Landscape

Contact ALCES for Athabasca Landscape Team, 2009
2013

A Fork in the Road: Future Development in Ontario’s Far North

Carlson, M., and C. Chetkiewicz. 2013

Ontario's Far North contains some of the world's most intact subarctic terrestrial and aquatic ecosystems. It is a stronghold for a number of fish and wildlife species such as woodland caribou, wolverine, and lake sturgeon. The region is also the homeland of Ojibwe, Oji-Cree and Cree First Nations who have established longstanding traditional cultural values and a unique relationship with this land that they have used and occupied for thousands of years. The environment in the Far North provides important "services" to people such as climate regulation, food, cultural values, and clean and abundant water supplies. The Far North also includes a wealth of natural resources such as minerals, hydropower development potential, timber resources, and other resource development opportunities. In 2010, the Government of Ontario committed to working with First Nation communities to develop land-use plans that support conservation and development of the Far North. An important step in the planning process is assessing whether the cumulative effects of the full suite of potential future developments are compatible with the aspirations of First Nations and Ontario. To support decision-making in this unique region, we applied a simulation model (ALCES®) to explore changes in the composition of regional landscapes associated with potential future mining, hydroelectric development, and forestry activity as well as forest fires, and the implications for woodland caribou, wolverine, moose, and the intactness of watersheds. Our study focused on the James Bay Lowlands, which includes the large mineral reserves in the Ring of Fire, numerous kimberlite deposits, including the Victor Diamond mine, and major rivers with hydropower potential such as the Attawapiskat, Moose, and Albany. To encompass the full extent of the Pagwachuan Caribou Range, the study area extended south of the James Bay Lowland thereby also incorporating portions of five Sustainable Forest Licenses that are managed primarily for timber production. The simulated development scenario resulted in a three-fold increase in anthropogenic footprint over 50 years, primarily due to road and transmission corridor expansion to support industrial developments. The spatial pattern of the simulated footprint differentiated between the dispersed road network associated with forestry in the south and the more isolated, but intensive, mining and hydroelectric Executive Summary To support decisionmaking in this unique region, we applied a simulation model (ALCES) to explore changes in the composition of regional landscapes associated with potential future mining, hydroelectric development, and forestry activity as well as forest fires, and the implications for woodland caribou, wolverine, moose, and the intactness of watersheds. vi Canadian Boreal Initiative | Wildlife Conservation Society Canada developments in the north. The simulated forestry activity in the south had consequences for the Pagwachuan Caribou Range where the risk to herd survival approached the high category and range disturbance exceeded a threshold of 35% – a guideline in the national caribou recovery strategy. Simulated impacts to wolverine were also greatest in the south, where expansion of the road network caused habitat suitability to decline. Land use impacts to wildlife such as caribou and wolverine may be exacerbated by climate change. As an example, the moose population was simulated to increase twofold when climate change was incorporated, which would likely cause the region’s wolf population to grow with negative implications for caribou herd viability. Simulated mining and hydroelectric developments were sufficiently isolated at a regional scale to avoid large impacts to caribou and wolverine. A greater concern, however, may be the consequences of these developments to the integrity of aquatic ecosystems. The watershed impact score increased for a number of northern watersheds, demonstrating that risk to aquatic ecosystems is likely to increase in watersheds that contain important natural resource regions such as the Ring of Fire due to the presence of multiple mining and hydroelectric developments. The outcomes of this pilot project offers important considerations when addressing cumulative effects in northern Ontario, including: the benefit to wildlife of limiting land use to isolated regions within an otherwise intact landscape; the need to improve understanding of the cumulative effects to aquatic ecosystems of multiple large-scale developments (e.g., mines, dams) within northern watersheds; and the potential for climate change to increase the sensitivity of wildlife to industrial land use. We hope these findings will inform land-use planning at both the community and regional scale and motivate additional analyses that are needed to comprehensively assess cumulative effects in Ontario’s Far North.

Contact ALCES for Carlson, M., and C. Chetkiewicz. 2013, 2013
2007

A Comparison of Land Use Options for the Mbaracayu Biosphere Reserve - Final Report

Matt Carlson

Unplanned and unsustainable land use has transformed the Atlantic Forests of Paraguay, Brazil and Argentina. In 1991, responding to the rapid loss of Atlantic Forest, the Government of Paraguay created the Mbaracayu Forest Natural Reserve (MFNR) and established the Cuenca watershed as a mixed-used protected area. Given the land use pressures facing the region, the future existence of healthy ecosystems within the Cuenca relies on balancing land use with conservation. The Mbaracayu program, run by the Fundacion Moises Bertoni (FMB), seeks to integrate a vision of sustainable and social development in harmony with the conservation of the MFNR. In response to the recognized need for a management plan, the FMB collaborated with the Alberta Research Council on the project "Capacity Enhancement for Community- and Ecologically-based Management in the Bosque Mbaracayu Biosphere Reserve, Paraguay". As part of the project, the land use simulation tool ALCES was applied to evaluate land use scenarios in the Cuenca. Applying ALCES contributed to the development of a management plan by informing the identification of sustainable land use options. The report is intended to communicate the ALCES tool and analysis, solicit feedback, and inform training of FMB staff to apply ALCES in the Cuenca.

Contact ALCES for Matt Carlson, 2007
2016

A Biophysical and Land Use Atlas for Maui, Hawaii

Stelfox, J.B.

A biophysical atlas of physical features (soils, climate, topography), plant communities and land use sectors (croplands, residential, transportation, mining, industrial and tourism) was assembled in Alces Online and then used to prepare an online Atlas. This atlas is now available for the educational sector (primary, secondary, post-secondary) for the State of Hawaii. These materials were presented to local governments, land trusts, and the University of Hawaii.

Contact ALCES for Stelfox, J.B., 2016
Projects: 41-45 of 45
< 1 2 3 4 5
Items per page: 10 25 50