ALCES Based Project Reports

Year Title (Author, Description) File Download
2008

In Situ Oil Sands Footprint Monitoring Project

Antoniuk, T., Manuel,, M., Sutherland, M., and Bowen, J.

Prepared for Alberta Environment Land Monitoring Team Stakeholders and regulators have become increasingly concerned about the cumulative impact of existing and future in situ oil sands operations on ecosystem health and reclamation success in the Lakeland Industrial and Community Association (LICA) region. To respond to these concerns, Alberta Environment (AENV) commissioned a pilot project to develop a terrestrial footprint monitoring protocol for the LICA region. The In situ Footprint Monitoring Project (the In situ project) was completed by the ALCES Group in association with InfoJim Inc. The intent of the project was to establish a foundation for ongoing monitoring of the in situ development footprint that would ultimately assist stakeholders and regulators in responsible land management and sustainable development. Specific objectives defined by AENV were: 1. Develop an indicator-based approach and protocol to assess landscape features and evaluate land disturbances and reclamation progress over time, utilizing spatial information at an appropriate scale to enable comprehensive evaluation of cumulative land disturbances. 2. Using the developed protocol – identify, monitor, and map the cumulative land footprint associated with in situ activities for the selected area between 1980 and 2007, and to enable periodic updates after 2007.

Contact ALCES for Antoniuk, T., Manuel,, M., Sutherland, M., and Bowen, J., 2008
2009

Athabasca Landscape Team Caribou Management Options

Terry Antoniuk, John Nishi

Athabasca Caribou Landscape Management Options Report Athabasca Landscape Team May 2009 EXECUTIVE SUMMARY Woodland caribou are listed as "threatened" under both Alberta's Wildlife Act and the federal Species at Risk Act. The Athabasca Landscape Team (ALT) was established in June 2008 by the Alberta Caribou Committee Governance Board (ACCGB) and tasked with developing an Athabasca Caribou Landscape Management Options report for boreal caribou ranges in northeast Alberta (hereafter Athabasca Landscape area). The ALT was asked to develop management options to recover and sustain boreal caribou in all populations in the Athabasca Landscape area, consistent with the provincial woodland caribou Recovery Plan (2004/05 – 2013/14), but not to consider detailed technical, political or economic challenges. The ALT determined that there is insufficient functional habitat to maintain and increase current caribou distribution and population growth rates within the Athabasca Landscape area. Boreal caribou will not persist for more than two to four decades without immediate and aggressive management intervention. Tough choices need to be made between the management imperative to recover boreal caribou and plans for ongoing bitumen development and industrial land-use. The four Athabasca ranges — Richardson, West Side Athabasca River (WSAR), East Side Athabasca River (ESAR), and Cold Lake Air Weapons Range (CLAWR) — reflect known caribou locations and the presence of suitable peatland habitat. A 20 kilometre (km) buffer was added to these combined ranges to identify ‘planning areas’ that reflect the influence of adjacent habitats and populations of predators and other prey on caribou population dynamics. Available information suggests that there is limited movement between the four ranges or populations. Discrete caribou habitat areas are primarily found in large peatland complexes, but lichen-rich pine forests are also used. These peatlands occur within a matrix of upland mixedwood forest that is avoided by caribou, but provides habitat for other prey species (i.e., moose, white-tailed deer and beaver) that in turn support wolves, black bear, and other potential predators. The selection for peatlands appears to be a spatial separation strategy critical to the survival of boreal caribou. All monitored caribou populations in the Athabasca Landscape area are currently in decline, and recent trends and simulation modeling results indicate that there is a high risk that the populations will not persist for more than forty years. Current extrapolated caribou abundance in the landscape area (ca. 900 animals) is well below the number that would be expected in the absence of industrial land-use. Predation appears to be the immediate cause of recent declines, and available information indicates that this is directly or indirectly linked to land-use features, including roads, harvest blocks, leases, pipelines and power lines, seismic lines, and agricultural/residential clearings that have led to an increase in moose and deer populations within and around caribou ranges. The ALT undertook two analyses from which it developed the management options presented in this report. The first was a rating of the relative risk to caribou persistence within each planning area and range based on a series of eight risk criteria. These criteria Athabasca Landscape Team i Athabasca Caribou Management Options Report included both biological and land-use factors believed to influence short- or long-term persistence and habitat function. Table 2 in this report defines each criterion and summarizes how it was used, along with relevant assumptions and comments. The overall risk rating for each planning area is provided in the Table included at the end of this Executive Summary. The second analysis conducted for each planning area or range by the ALT involved simulation modeling using ALCES®. Modeling was conducted to forecast likely caribou populations and habitat conditions under three scenarios including Non-Industrial, Business as Usual, and Alternative Futures. Scenarios for Alternative Futures were designed so that multiple simulations would identify the management lever, or combination of levers, that could maintain or increase boreal caribou numbers over the next 50 years. Land-use footprint, associated with oil sands (bitumen) extraction and forest harvest, is likely to increase throughout the Athabasca Landscape area over the next 50+ years. The highest risk to caribou occurs in areas that are underlain with thick bitumen deposits (which includes portions of all planning areas). Small population size is also associated with higher risk, as in the Richardson and CLAWR areas where both potential and existing populations are considered to be less than 150 individuals. Risk for caribou persistence is lower (but still rated as medium) in the WSAR and the eastern portion of the ESAR planning areas. The ALT’s analyses show that the time for management action in the Athabasca Landscape area is now. Risk of extirpation increases yearly, and further delays in management action implementation will compound the current challenges. ALT analyses demonstrate that an aggressive suite of management options (likely totalling hundreds of millions of dollars) will need to simultaneously focus on reducing predation risk and restoring functional caribou habitat within each planning area. It is important to reiterate that evaluation of political and economic implications of management options was considered outside the scope of the ALT. Likewise, consultation and engagement of parties that would be affected by the recommended management options has not been completed. Nevertheless, the ALT concluded that a suite of management options would be needed to maintain and increase current caribou distribution and population growth rates. Landscape scale management will be required to successfully sustain caribou in the Athabasca Landscape area. The ALT proposes that this region be managed as two zones. In Zone 1 Areas, described in more detail below, caribou recovery would be the priority designated land use, and all management options identified below would be implemented. Elsewhere within planning areas (Zone 2), all management options excluding future footprint restrictions would be implemented. The exception is portions of the ESAR – Bitumen Fairway sub-planning area underlain by thick bitumen deposits where appropriate best practices would be implemented. The suite of management options identified by the ALT includes:
Athabasca Landscape Team ii Athabasca Caribou Management Options Report ¥ establish large (thousands of square kilometre) Zone 1 Areas in portions of each planning area where recovery of functional habitat (footprint is reduced well below today’s levels through aggressive and coordinated reclamation and future industrial footprint is restricted to levels below current conditions); and caribou mortality control (wolves and other prey are controlled for 50+ years) would be the designated and enforceable management priority; 
 ¥ elsewhere within caribou planning areas (Zone 2 Areas): control wolves and other prey for 100+ years; conduct coordinated reclamation; and implement enhanced best practices; and 
 ¥ as the viability of cow-calf penning or predator-prey exclosures is uncertain, the Richardson planning area is the most appropriate location to test this option. 
The table below provides a summary of the management options that would recover and sustain current caribou abundance and distribution in each Athabasca Landscape planning area. All identified options would need to be implemented as an integrated suite. Simulations showed that successful combinations of management levers were common to all planning areas, although the extent and duration of management actions differed slightly between areas. Simulations and risk ratings demonstrate that larger or more intact planning areas such as WSAR and Richardson have higher probability of success than do smaller, or less intact planning areas such as CLAWR and ESAR in the bitumen fairway. 
The ALT concluded that ‘Zone 1 Areas’ should be established to increase the probability of successfully recovering caribou in each planning area.
Although implementation will require further consultation with stakeholders and consideration of the current land-use policy and regulatory system in the province, the value of Zone 1 Areas is that they would apply a cumulative effects management approach where caribou recovery would be the designated and enforceable land-use priority. From an ecological perspective, Zone 1 Areas need to be of sufficient size (thousands of square kilometres) to recover and sustain an isolated caribou population. In these areas, combined footprint would be reclaimed and future footprint restricted to very low levels (below current conditions) concurrent with continuous predator control until functional habitat is restored. Six candidate areas have been identified in portions of the WSAR, Richardson, ESAR-W, ESAR-E, and CLAWR planning areas. To achieve provincial caribou recovery goals, the ALT boreal caribou management objective, and offset current declines of woodland caribou populations in the Athabasca Landscape area, all planning areas should receive protection through designation and implementation of Zone 1 Areas. Indeed for small planning areas with high relatively high industrial land used and anthropogenic footprint like the CLAWR area, all suitable range should be considered as a Zone 1 Area in order to ensure persistence of caribou. However, if political considerations preclude this approach, the ALT recommends that priority for establishing Zone 1 areas should be in planning areas with greater chance of success for population recovery (i.e., the order listed in the table below). Ultimately, population size and management effectiveness is related to the amount of functional or intact habitat. If two planning areas are similar in most respects, and choices have to be made between them, the ALT concluded that the area with larger, more continuous, or relatively intact habitat has a greater chance of success. 
 Athabasca Landscape Team iii Athabasca Caribou Management Options Report A more quantitative evaluation of candidate Zone 1 Areas based on the concepts of risk management and viable populations should be undertaken to understand the relationship between area and extirpation risk and to optimize the location and size of candidate areas. Mortality management and functional habitat restoration through coordinated reclamation and appropriate best practices are required management options in Zones 1 and 2 of each planning area. Habitat restoration on its own will not achieve success, because unmanaged predation by wolves will cause ongoing decline in caribou numbers in the near term (i.e., several decades minimum), despite restoration efforts. Similarly, mortality management aimed at increasing caribou survival will help caribou persist, but will have to be continued indefinitely if functional habitat is not restored. These two management strategies – restoration of functional habitat and mortality management – must be applied together. It is important to note that the benefits of habitat restoration will not be realized for decades because there is a 30-50 year lag time following reclamation before forest becomes old enough to be considered low quality for other prey, and suitably old to be used by caribou. At minimum, mortality management will need to be continued for this entire lag period. For this reason, long-term risk will be minimized if both habitat restoration and mortality management begin as soon as possible. The suite of successful management options evaluated by the ALT provides new landscape-scale strategies to sustain caribou, but there are also several key challenges: ¥ establishing legislated boundaries and management guidance for Zone 1 Areas; 
 ¥ conducting landscape-scale reclamation programs coordinated among multiple 
stakeholders; 
 ¥ aggregating decisions for landscape-scale caribou management that are made by 
individual government departments into a broader integrated cross-government 
strategy; 
 ¥ consultation and engagement of stakeholders who would be affected by the 
recommended management options contained in this report; and 
 ¥ building awareness of decision-makers, land users, and the general public to 
maintain social and financial support for required management actions, research, and monitoring over the long term. 
The ALT suggests that the current Lower Athabasca Regional Planning initiative under the Alberta Land-Use Framework is an appropriate forum to address these challenges for the Richardson, ESAR, and CLAWR planning areas. The management strategies identified by the ALT will require further leadership and work by the ACC Governance Board and collaboration with others to identify solutions to policy challenges and to develop clear implementation rules and processes that are consistent with existing and proposed legislation. 


Contact ALCES for Terry Antoniuk, John Nishi, 2009
2016

An assessment of the cumulative effects of land use and management in SSN

B. Wilson, M. Carlson, M. Iverson, and J. Straker, S. Sharpe

EXECUTIVE SUMMARY The St’kemlupsemc Te Secwepemc Nation (SSN) requested that ALCES Landscape and Land Use Ltd. (ALCES) conduct a cumulative-effects assessment for the SSN traditional territory, including any effects contributed by the proposed Ajax mining project. Simply put, cumulative effects are the changes caused by our actions today in combination with other past, and reasonably foreseeable human and natural disturbance. Critical components of this assessment include: • assessment over the entire SSN traditional territory, as well as the Ajax Regional Study Area (RSA) where appropriate; and • referencing current and forecast future conditions against ranges of natural variation approximating pre-contact conditions. This report provides a summary of the undertakings, findings and any recommendations emerging from this work for consideration by the SSN Review Panel in its deliberations regarding the proposed KGHM Ajax project within the SSN Traditional Territory. Simulation models are tools that provide insight into the potential outcomes of different land use management strategies. Models will not explicitly tell us what the “best” management objective or implementation approach is – this is the role of decision makers. ALCES is an acronym that stands for A Landscape Cumulative Effects Simulator. ALCES Online (AO) is a web-based GIS and landscape simulator for assessing the cumulative effects of multiple overlapping land uses and external stressors such as climate change. Indicators are measures of values of interest that help us understand the consequences of human land use and natural disturbance The ALCES simulation model was used to simulate ecosystems and forest fires during pre-contact conditions, and to additionally simulate the current and future effects of key human land uses, including mining (metal and aggregate), forest harvest, road construction, rural and urban residential growth, and recreation. These simulations were assessed for the cumulative effects on a range of land-use and ecosystem indicators, including five key indicators selected by SSN representatives: 1. land dispossession and tenure; 2. grasslands quantity and quality; 3. mule deer; 4. fish; and 5. an index of animal protein sources. Results of this work demonstrate substantial effects for all of these indicators from the precontact period to current conditions. All grassland and wildlife indicators show estimated declines within the SSN Traditional Territory ranging from 13% to 100%. In addition, development of the proposed Ajax mine project is shown to further contribute to decline in ALCES Landscape & Landuse Ltd. www.alces.ca ii future indicator performance for the grasslands and protein indices. Performance for the key selected indicators is summarized below: • Land dispossession and tenure – roughly 316,000 ha, or 25%, of the SSN traditional territory has been dispossessed through granting/sale of private lands, designation of provincial parks or other protected areas, and through direct construction of human footprint. These dispossessed areas are generally concentrated around the city of Kamloops and the grasslands to the south, as well as along the Thompson River valleys. Addition of non-forestry tenure types (mineral leases, guide-outfitter areas, range tenures, and the Agricultural Land Reserve) brings the total dispossessed land to 110% of the traditional territory. This analysis demonstrates that even without inclusion of forestry tenures that have granted forest-harvest rights and the ability to impose associated land management activities on the landscape, almost the entirety of the SSN traditional territory is occupied by at least one tenure type that is restrictive of SSN use of this land base. • Grasslands quantity and quality – grasslands comprised approximately 15% of the SSN traditional territory in pre-contact times. An analysis of current conditions indicates the absolute loss due to human land uses of almost 26,000 ha within the traditional territory, or approximately 14% of the original grasslands. These metrics are further pronounced in an examination of the Ajax RSA. In pre-contact times there were approximately 63,000 ha of grasslands in the RSA, or about 1/3 of the grasslands in the SSN traditional territory. Roughly 8200 ha, or 13%, of these grasslands have been lost due to human development at present, and future development over the next 50 years is projected to remove another 3400 ha, or 6% of the remaining grasslands. One of the larger intact grasslands in the RSA is the 2200-ha area north of the proposed mine development, and south of the Aberdeen neighborhood in the city of Kamloops. Declines in grassland quality are also estimated to have occurred and to continue occurring, both at the scale of the SSN traditional territory and within the RSA for the proposed Ajax mine. These declines are due to the combined effects of fire suppression, cattle grazing, introduction of non-native and invasive species, and physical removal of grasslands due to construction of human footprints. Integration of quantity and quality as an aggregate metric suggests that there has been an approximate 67% decrease in the integrity of native grasslands in the SSN traditional territory from pre-contact times to the present, and a 72% decrease within the Ajax RSA. • Mule deer – the habitat-effectiveness index for mule deer is currently 21% below the estimated lowest pre-contact level. This index is predicted to recover over the 50-year forecast driven by changes in forest demographics, but will still remain well below the minimum pre-contact level for this species. Fish – fish habitat is estimated for species that occur within the mainstems of the Thompson Rivers, including interior Fraser coho, an at-risk population. Average fish habitat values across the study area have declined by 27.5% from reference values, but some areas are higher, with declines in excess of 50%. These estimates of decline are conservative, in that they are based solely on a narrow assessment of mainstem habitat values, and do not account for temperature and flow effects within the river, nor population effects due to other factors. In addition, due to its limitation to the mainstem Thompson rivers, our analysis was not able to assess effects on fish inhabiting the Pípsell (Jacko Lake) area and associated watercourses. • Index of animal protein sources - The index of primary pre-contact terrestrial animal protein sources has declined by approximately 49% in current conditions from the precontact period, due both to degradation of grouse and mule-deer habitat and due to extirpation of elk and caribou from the traditional territory. Combining the effects of habitat degradation, extirpation, and land dispossession indicates an even greater effect: a 62% decline in availability of these protein sources under current conditions in comparison to the pre-contact period, as the majority of the highest quality habitat for the traditional protein species is largely inaccessible due to the granting of private title and construction of human footprint. As with the grasslands analysis, these effects are further pronounced in the RSA for the proposed Ajax mine – in this area, the decline in accessible terrestrial animal protein sources is 74% in current conditions compared to the pre-contact period. Addition of the fish indicator to the terrestrial protein indicators shows a total precontact protein indicator decline of 36% from pre-contact to current conditions. When the effects of tenure and direct displacement are added, the estimated decline is 42%. These and supporting analyses conducted for this report show the already substantial cumulative effects of land-management decisions and use in the SSN traditional territory, with generally large changes estimated from the pre-contact period to the present. Although the proposed Ajax project is relatively small, it is an additional stressor on the territory’s ecosystems and the organisms that depend on them, and its development would cause further loss to key SSN indicators, particularly grasslands and related species.

Contact ALCES for B. Wilson, M. Carlson, M. Iverson, and J. Straker, S. Sharpe, 2016
2014

Final UBBCES Natural Capital Report

Brad Stelfox, Matt Carlson, ALCES

Temporal and Spatial Changes in the Natural Capital of the Upper Bow River Basin, Alberta, Canada. This report summarizes key findings of the Upper Bow River Basin Natural Capital Study – a project tasked with quantifying the current condition, historical changes, and future projections in natural capital for the Upper Bow River Basin, Alberta. These findings are intended to inform and assist land use decisionemakers required to devise regional plans that consider natural capital tradeeoffs.

Contact ALCES for Brad Stelfox, Matt Carlson, ALCES, 2014
2019

Modelling regional futures at decadal scale: application to the Kimberley region

Fabio Boschetti, Hector Lozano-Montes, J. Brad Stelfox

We address the question of how to provide meaningful scientific information to support environmental decision making at the regional scale and at the temporal scale of several decades. Our application is the management of a network of marine parks in the Kimberley region of Western Australia, where the key challenges to environmental sustainability are slow-dynamics climate change processes and one-off investments in large infrastructure, which can affect the future of a region for decades to come. In this situation, strategic, rather than reactive planning is necessary and thus standard adaptive management approaches may not be effective. Prediction becomes more urgent than adaptation, in terms of assessing the long term consequence of specific economic and conservation decisions. Working at the interface between future studies, socio-economic modelling and environmental modelling, we define 18 scenarios of economic development and climate change impacts and 5 management strategies aimed at ensuring the sustainability of the marine environment. We explore these potential future trajectories using coupled models of terrestrial land use and marine ecosystem dynamics. The Alces model simulates the dynamics of bio-physical and socio-economic processes on land and the pressures these impose on the coastal and marine environment. This forces an Ecopath with Ecosim (EwE) model used to simulate marine processes, foodweb dynamics and human activities in the marine environment. We obtain a projection of the Kimberley marine system to the year 2050, conditional on the chosen scenarios and management strategies, which is compatible with the best available knowledge of the current system state (as codified in the models’ input) and system functioning (as represented in the models’ dynamics). Our results suggest that climate change, not economic development, is the largest factor affecting the future of marine ecosystems in the Kimberley region, with sedentary species such as reef fish at greatest risk. These same species also benefit most from more stringent management strategies, especially expansion of sanctuary zones and Marine Protected Areas.

Contact ALCES for Fabio Boschetti, Hector Lozano-Montes, J. Brad Stelfox, 2019
Projects: 41-45 of 45
< 1 2 3 4 5
Items per page: 10 25 50