Land-Use References

Year Title (Author, Description) File Download
2008

Lake Simcoe Basin’s Natural Capital: The Value of the Watershed’s Ecosystem Services

Sara J. Wilson

This study quantifies the natural capital value of the ecosystem goods and services provided by Lake Simcoe’s watershed, a section of which is located in Ontario’s Greenbelt. At a minimum estimated worth of $975 million per year, the services provided by the watershed are worth $2,780 to each of the 350,000 permanent residents annually. This study represents the first application of this methodology to a watershed in southern Ontario. Goods and services provided by ecosystems are traditionally undervalued as they go unmeasured by conventional economics. These benefits include storage of floodwaters by wetlands, air pollution absorption, climate regulation, pollination of crops and water filtration, resulting in clean air and water and safe and abundant local food sources. In order to measure the value of these benefits, this study first describes the watershed’s natural assets – that is, the extent of the forests, wetlands, grasslands, water bodies, agricultural lands and urban or built-up areas. Then, using market-determined values (e.g. the avoided increased costs of a man-made water filtration service as a proxy for the existing capabilities of a natural system to filter water), the study was able to quantify many of the goods and services that are provided by the watershed.

Contact ALCES for Sara J. Wilson, 2008
2008

Quantification of Extinction Risk: IUCN’s System for Classifying Threatened Species

G. Mace, N. Collar, K. Gaston, C. Milner-Gulland, and S. Stuart

The International Union for Conservation of Nature (IUCN) Red List of Threatened Species was increasingly used during the 1980s to assess the conservation status of species for policy and planning purposes. This use stimulated the development of a new set of quantitative criteria for listing species in the categories of threat: critically endangered, endangered, and vulnerable. These criteria, which were intended to be applicable to all species except microorganisms, were part of a broader system for classifying threatened species and were fully implemented by IUCN in 2000. The system and the criteria have been widely used by conservation practitioners and scientists and now underpin one indicator being used to assess the Convention on Biological Diversity 2010 biodiversity target. We describe the process and the technical background to the IUCN Red List system. The criteria refer to fundamental biological processes underlying population decline and extinction. But given major differences between species, the threatening processes affecting them, and the paucity of knowledge relating to most species, the IUCN system had to be both broad and flexible to be applicable to the majority of described species. The system was designed to measure the symptoms of extinction risk, and uses 5 independent criteria relating to aspects of population loss and decline of range size. A species is assigned to a threat category if it meets the quantitative threshold for at least one criterion. The criteria and the accompanying rules and guidelines used by IUCN are intended to increase the consistency, transparency, and validity of its categorization system, but it necessitates some compromises that affect the applicability of the system and the species lists that result. In particular, choices were made over the assessment of uncertainty, poorly known species, depleted species, population decline, restricted ranges, and rarity; all of these affect the way red lists should be viewed and used. Processes related to priority setting and the development of national red lists need to take account of some assumptions in the formulation of the criteria.

Contact ALCES for G. Mace, N. Collar, K. Gaston, C. Milner-Gulland, and S. Stuart, 2008
2008

Potential of Rangelands to Sequester Carbon in Alberta

Eric Bremer

Contact ALCES for Eric Bremer, 2008
2008

Sediment Production and Delivery from Forest Roads and Off-Highway Vehicle Trails in the Upper South Platte River Watershed, Colorado

Matthew J. Welsh

Sediment is a principal cause of impairment to surface water quality. Erosion is a particularly important environmental issue in the Upper South Platte River (USPR) watershed of Colorado because it is the primary source of drinking water for Denver, has a high-value fishery, and several stream reaches are impaired by high levels of sediment. Unpaved roads are often considered a dominant source of sediment in forested watersheds, and off-highway vehicle (OHV) trails are another potentially important but largely unquantified sediment source. The objectives of this study were to: (1) quantify sediment production and delivery from forest road and OHV trail segments in the USPR watershed; (2) test the accuracy of WEPP:Road, SEDMODL2, and two empirical models for predicting sediment production from roads and OHV trails; and (3) compare sediment production, sediment delivery, and sediment yields from forest roads and OHV trails. Rainfall, site characteristics, and sediment production were measured on 14-22 native surface road segments from 2001 to 2006, and these data were used to test the accuracy of WEPP:Road and SEDMODL2. Empirical models for predicting storm-based and annual sediment production were developed from the first four years of data; the last two years of data were used for model testing. Similar measurements on 5-10 OHV trail segments from 2005 to 2006 were used to test WEPP:Road and SEDMODL2. Sediment delivery was assessed by detailed surveys along 17 km of roads and 10 km of OHV trails. In 2006 mean sediment production from the 10 OHV trail segments was 18.5 kg m-2 yr-1, or six times the mean value from the 21 road segments. The percentage of OHV trails connected to streams was 24%, or 70% higher than for roads, largely because more OHV trails were in the valley bottoms. None of the models accurately predicted sediment production from roads or OHV trails, but the performance of SEDMODL2 was greatly improved by calibrating the geology and traffic factors to the study area. SEDMODL2 also could be improved by adjusting the slope factor, better accounting for rill density on native surface roads, and making the rainfall factor dependent on rainfall erosivity rather than rainfall depth. WEPP:Road could be improved by making sediment production decrease rather than increase with higher soil rock content, and increasing the effect of a categorical change from no traffic to low traffic. Road density in the study area is 0.6 km km-2, or three times the density of OHV trails. Multiplying unit area sediment production normalized by summer erosivity times the density, mean active width, and percent connectivity indicates that roads and OHV trails are respectively delivering approximately 1.1 Mg km-2 and 0.8 Mg km-2 of sediment to the stream network per year. Sediment delivery to streams can be reduced by locating roads and OHV trails out of valley bottoms and off steep hillslopes, decreasing segment lengths, and reducing segment slopes.

Contact ALCES for Matthew J. Welsh, 2008
2008

Curing Environmental Dis-Integration: A Prescription for Integrating the Government of Alberta's Strategic Initiatives

Danielle Droitsch, Steven A. Kennett, and Dan Woynillowicz

The Government of Alberta lacks the regulatory ability to manage the cumulative environmental impacts of the industrial development and other human activities now occurring across Alberta's landscapes. A new approach to environmental decision-making is needed to avoid continued decline in key indicators of environmental quality and depletion of Alberta's natural capital.

Contact ALCES for Danielle Droitsch, Steven A. Kennett, and Dan Woynillowicz, 2008
2008

Ecological Infrastructure Mapping - Southern Alberta Region

02 Planning + Design Inc.

An assessment of ecosystem goods and services (EGS) in southern Alberta was initiated in 2006 by Alberta Environment. Ecosystem services are the conditions and processes through which natural ecosystems, and the species that make them up, sustain and fulfill human life (Daily 1997). The current study builds on the first two project phases by expanding the discussion of landscape patterns required to sustain the provision of ecosystem goods and services based on an identification of ecological infrastructure in the Southern Alberta region. Ecological infrastructure refers to the core features of a network that provides ecosystem services (Tzoulas et al. 2007): in this case, in the Southern Alberta region. At a regional scale, it includes the system of structural and functional terrestrial and aquatic landscape features such as clean water and habitat (Quinn, unpublished work, 2007). Components of ecological infrastructure chosen for mapping in the scope and scale of the current project include: 1. Stream corridors 2. Natural vegetation patches and stepping stones 3. Waterbody complexes 4. Areas of high species richness potential 5. Alluvial soils 6. Unique land cover types or areas GIS models were created in ArcGIS 9.2 to support the identification and mapping of ecological infrastructure components. The stream corridors map showed a high density of stream corridors in the forested landscapes to the west and southeast; very few corridors exist in the central Southern Alberta region. The largest patches of natural vegetation over 10 000 ha in size are located in the southeast and northeast. The central part of Southern Alberta has few large patches of natural vegetation, and those that remain in this area will be regionally valuable. The greatest concentration of waterbody complexes is in the northeast portion of Southern Alberta, which has a number of small complexes of standing water. When the top five classes (highest 50%) of species rich areas were selected, grasslands, forests, riparian areas and wetland cover types were picked out. Alluvial soils were found to be concentrated near the base of the Rocky Mountains along the western border of Southern Alberta. Unique land cover types including ridges and low percentage cover types were mapped, but ridges were difficult to analyze at this scale. A combined map of all ecological infrastructure components was created in which each pixel was assigned a sum value of each ecological infrastructure component it included. The high value of several landscape units to overall regional ecological infrastructure was evident. To identify the areas of coincidence between ecological infrastructure and a spatial representation of ecosystem services in the region, the ecological infrastructure was analyzed against a map representing areas with high importance to the provision of ecosystem services. O2 Planning + Design Inc. – DRAFT ii The ecological infrastructure was found to encompass 99.6% of all areas identified as high ecosystem service provision. In terms of the condition of ecosystem services, those areas of high service provision that are coincident with ecological infrastructure are most likely to be in good condition through landscape connections and within large natural patches that promote functioning ecological processes. For future application, each component of ecological infrastructure can be mapped on smaller scales, depending on the desired objectives. These processes and models can therefore support informed land use planning in the region.

Contact ALCES for 02 Planning + Design Inc., 2008
2008

Modeling Cumulative Effects in Barren-ground Caribou Range: Proceedings of a Workshop in Yellowknife

Jan Adamczewski, John Nishi, Anne Gunn, Terry Antoniuk, Chris Johnson, Don Russell, Ted Blondin, All

In the early 2000s, most herds of barren-ground caribou in the Northwest Territories (NWT) were declining. The declines aroused considerable concern in NWT communities because caribou have been a resource of great value to people in the north for many generations. Possible explanations for the declines include a natural cycle, variation in weather and forage conditions, predation, hunting, disease, and industrial development. Of these factors, some are beyond immediate control, but effects due to direct human influence, like hunting and development, can be managed. The impact of development on caribou is usually not due to single roads, mines, cut-blocks or seismic lines, rather it is the cumulative effects of many habitat alterations over time that affect caribou numbers and distribution. Concerns over effects of development on caribou have been raised in environmental assessments and particularly by aboriginal groups for many years, but progress on assessing them has been limited. To be objective, assessment of cumulative effects must account for other factors, including hunting and natural variation in weather. Due to the need for overall knowledge of a caribou herd‟s complex ecology in assessing cumulative effects, biologists have turned to computer models to help track multiple variables and relationships, and to look at “what if” simulations. While these models cannot predict the future, they can help users understand how various factors interact and what likely consequences of particular management decisions might be. In the 2006-2010 NWT Caribou Management Strategy, a commitment was made by the Government of the Northwest Territories to developing a modeling approach that could assess development in its proper context of natural variation. In this report we summarized the presentations and participant responses at a public workshop held in February 2008, Yellowknife, NWT, on modeling cumulative effects in the range of the Bathurst herd. In addition, we report on progress towards a demonstration project initiated at the February 2008 workshop.

Contact ALCES for Jan Adamczewski, John Nishi, Anne Gunn, Terry Antoniuk, Chris Johnson, Don Russell, Ted Blondin, All, 2008
2007

An Examination Of The Effects Of Economic Growth On Landscape Features And Processes In Southern Alberta Using ALCES

Terry Antoniuk, Brad Stelfox, and Mark Anielski

Regional-scale modelling examined the long-term cumulative effects of land-use, resource demands, and population increases on the landscape of southern Alberta. The results will help inform the project, Southern Alberta Landscapes: Meeting the Challenges Ahead (SAL), in addressing the increased use of our environment into the future. SAL was launched in 2002 as a cross-Ministry, inter-governmental, strategic planning initiative to examine sustainable development issues in southern Alberta. A Base Case Scenario, which assumed a continuation of current land use practices and business plans, was developed first as a Baseline for comparison with other scenarios. An alternate scenario was then run to test various "What-if" questions. Both scenarios used 2000 for year zero because this was the most recent year for which most data were available for the region.

Contact ALCES for Terry Antoniuk, Brad Stelfox, and Mark Anielski, 2007
2007

FOREST RESERVES ACT

Government of Alberta

Details of the Forest Reserves Act.

Contact ALCES for Government of Alberta, 2007
2007

Scenario analysis in environmental impact assessment: Improving explorations of the future

Peter Duinker and Lorne Greig

Scenarios and scenario analysis have become popular approaches in organizational planning and participatory exercises in pursuit of sustainable development. However, they are little used, at least in any formal way, in environmental impact assessment (EIA). This is puzzling because EIA is a process specifically dedicated to exploring options for more-sustainable (i.e., less environmentally damaging) futures. In this paper, we review the state of the art associated with scenarios and scenario analysis, and describe two areas where scenario analysis could be particularly helpful in EIA: (a) in defining future developments for cumulative effects assessment; and (b) in considering the influence of contextual change, e.g. climate change, on impact forecasts for specific projects. We conclude by encouraging EIA practitioners to learn about the promise of scenario-based analysis and implement scenario-based methods so that EIA can become more effective in fostering sustainable development. Environmental Impact Assessment Review 27 (2007)

Contact ALCES for Peter Duinker and Lorne Greig, 2007
2007

Protecting Water, Producing Gas: Minimizing the Impact of Coalbed Methane and Other Natural Gas Production on Alberta’s Groundwater

Mary Griffiths

Contact ALCES for Mary Griffiths, 2007
2007

Road Sediment Production and Delivery: Processes and Management

Lee MacDonald and Drew B.R. Coe

Unpaved roads are often considered to be the predominant sediment source in forested catchments. In steep, wet climates roads can cause a 10- to 300-fold increase in the landslide erosion rate, and this increase is due to the effects of roads on hillslope flow paths and the structural integrity of hillslopes. The proportion of sediment that is delivered to the stream will generally be very high for road-induced failures in hollows and inner gorge landforms, and much lower for planar hillslope failures. The pulsed input of sediment from roadinduced landsliding can greatly alter stream channel habitat and morphology. Unpaved roads can increase sediment production rates by more than an order of magnitude as a result of road surface erosion. The high surface erosion rate stems from the generation of surface runoff from the highly compacted road travelway, the lack of surface cover, and the availability of fine sediment due to traffic and road maintenance procedures such as grading. Sediment delivery to streams occurs primarily at road-stream crossings and secondarily by road-induced gullies. The proportion of the road network that is connected to the stream network is primarily a function of mean annual precipitation (R2=0.9), and is increased by about 40% in the absence of any engineered drainage structures. The chronic input of the fine sediment from roads can have adverse effects on freshwater aquatic ecosystems as well as coral reefs. Our present understanding of road surface erosion processes is good, but our models to predict road surface erosion and landsliding are much better for relative than absolute predictions. Climate change can greatly increase road-induced landslides and road surface erosion by increasing the magnitude of large storm events and increasing the amount of rain relative to snow. Extensive field surveys also show that relatively few road segments typically generate most of the road-related increases in sediment yields. Road surface erosion, the risk of road-induced landslides, and road sediment delivery can be greatly decreased by improved road designs and maintenance practices. Hence the greatest needs are to develop and provide land managers with the tools for identifying high-risk segments, and then to make the necessary investments in road reconstruction and restoration.

Contact ALCES for Lee MacDonald and Drew B.R. Coe, 2007
2007

A new method to estimate species and biodiversity intactness using empirically derived reference conditions

S.E. Nielsen, E.M. Bayne, J. Schieck, J. Herbers, and S. Boutin

Critical to the conservation of biodiversity is knowledge of status and trends of species. To that end, monitoring programmes have reported on the state of biodiversity using reference conditions as comparison. Little consensus exists on how reference conditions are defined and how such information is used to index intactness. Most use protected areas or an arbitrary year as reference. This is problematic since protected areas are often spatially biased, while arbitrarily defined reference years are often not sufficiently distant in time. Biological Conservation 137 (2007)

Contact ALCES for S.E. Nielsen, E.M. Bayne, J. Schieck, J. Herbers, and S. Boutin, 2007
2007

Review of Alberta Environment’s Ecosystem Goods and Services Assessment - Southern Alberta Phase 2 Report

Management and Solutions in Environmental Science

Alberta Environment (AENV) requested that Management and Solutions in Environmental Science (MSES) review and assess their Ecosystem Goods and Services Assessment Report (EGS Assessment). The peer review provides comments on the main elements of the EGS Assessment. We base our review on the stated goal of the Ecosystem Services Project, namely that the “ultimate aim is … to deliver the right information to policy developers and decision makers…”. Specifically, MSES evaluates the overall framework of the EGS Assessment, addresses the questions posed by AENV, and provides recommendations for further discussion. The following overarching comments or points are made on the EGS Assessment. More detailed responses to specific questions can be found in the body of our report. A list of recommendations for consideration is also provided. 1. The EGS Assessment presents a useful framework for assessing goods and services that are provided by landscape parameters, which are composed of a mosaic of habitats and a diversity of wildlife that uses them. However, for discussion we would like to highlight the anchoring question of this work: “How do ecosystem services support the maintenance of natural and anthropogenic assets?” . A service supporting an asset is only meaningful from an anthropogenic economic perspective, wherein a service is maintained strictly for its value to humans. From a natural ecosystem perspective, is it not the asset that supports the service rather than the other way around? The wording of the question has a major impact on how one views the direction of dependencies. The way that all spreadsheet tables are set up in the document suggests that a service maintains an asset. Using a cow and produced milk as an example, the milk is the result of the condition of the cow: no cow – no milk; poor cow – little milk; good cow – plenty of milk. The authors of the report ask questions from an economic perspective (translated): how does the milk support the maintenance of the cow? Therefore, all spreadsheet tables must be read from assets to services. However, ecological systems include parameters that may or may not fit neatly into human economic systems. For example, “How do Prairie Wetlands maintain the service of water regulation?” While sometimes there are feedbacks from the services to the assets, this important point of critique has a large impact on the overall assessment. In addition to summing-up and reporting the services, the values of the assets (which, in part, should consider asset condition) should be summed-up also. 2. The world’s ecosystem services have been under-valued by several orders of magnitude. Many current economists’ approaches to put dollar values to natural assets are highly inadequate. Civilizations died out (e.g. Sumerians in Mesopotamia) because one single element of the ecosystem (soil) was degraded (salinization) to such an extent that food production was severely decimated. In the given example, what was the value of the soil? Is the value of the soil in this example not close to infinite? This idea is corroborated by Costanza et al. (1997), who state that in one sense the total value of ecosystem services to the economy is infinite. 3. In addition to the problem of evaluating an economic service provided by natural assets, there is an emotional or spiritual service that is extremely difficult to express in monetary terms; the human perception of well-being provided by the surroundings. For example, what would the quality of our lives be without rivers and lakes? Or with only polluted rivers and lakes? Natural assets provide services that we need for our spiritual survival as a whole. 4. While the authors have undertaken a literature review (200 titles), it is not necessarily exhaustive. It is likely that there are many more publications that could be reviewed with potential findings that could be incorporated into the southern Alberta EGS Assessment framework. The EGS Assessment is very important and complex, and additional work is required to fill in many of the existing gaps. 5. One of the objectives of the assessment is to “Provide an understanding of the value of high quality ecosystems in relation to economic production in southern Alberta,…”(pg 5). Figure 3-1 of the report (pg 12) presents a conceptual framework of the function of ecosystem services. However, the figure does not carry a clear message, as it does not provide specific details or an explanation of the different types of arrows. No other framework of value assessment of ecosystems is provided. De Groot et al. (2002) in Barg and Swanson (2004) provide one such figure (see Figure 1, this report) that could be used as a starting point for the framework (written for Agriculture and Agri-Food Canada). A clear division of ecological, socio-cultural and economic values could facilitate the value assessment of ecosystem services in southern Alberta.

Contact ALCES for Management and Solutions in Environmental Science, 2007
2007

Modelling potential effects of angling on recovery of westslope cutthroat trout (Oncorhynchus clarkii lewisi) in Alberta

Michael Sullivan

Alberta’s native form of cutthroat trout, westslope cutthroat trout (Oncorhynchus clarkii lewisi), was listed in 2006 as a threatened species under the federal Species at Risk Act. Amongst other legal requirements, this action requires that an assessment of threats be conducted to determine what activities are acceptable and unacceptable with respect to the maintenance and recovery of populations of these fish. Sport angling for cutthroat trout and other species is a popular activity throughout this fish’s habitat in Alberta and has the potential to harm this species’ recovery. To investigate this potential harm, the possible effects of a variety of angling scenarios (e.g., different levels of angler effort and regulations) on stream populations of cutthroat trout were simulated using a population dynamics computer model. The results of these simulations suggested that recovery of depressed cutthroat trout populations could occur under scenarios of limited and low angler effort, and no directed harvest (i.e., catch-and-release angling). Once recovered, however, healthy populations of westslope cutthroat trout may be maintained with catch-and-release angling with moderate fishing effort. Angling regulations that allow harvest of cutthroat trout are unlikely to either maintain or recover most populations unless angler effort is controlled. Incidental mortality (either through accidental hooking mortality or illegal harvest through misidentification of trout species) in these simulations was an important factor in population maintenance and recovery. This suggests that minimizing these sources of mortality may be an important management concern for this species.

Contact ALCES for Michael Sullivan, 2007
2006

DELIVERING UNPOPULAR MESSAGES: Don’t just survive. Succeed!

Lorne Fitch, P. Biol.

We’d all like to deliver popular messages, the ones people want to hear, the positive and uncontroversial ones and those that evoke emotional responses like gratitude, pleasure and warmth. In a perfect world what other messages would there be to deliver? In that other sphere those that listen to messages would be well informed, rational, interested, motivated, knowledgeable and broad-minded. The fact that people, in this world, often don’t display these characteristics is not an indictment against them. It isn’t right, it isn’t wrong; it is just that way. As someone who is going to deliver an unpopular message it is the recognition that some responses are predictable, unsurprising and not totally unjustified. As the deliverer of that message, you are challenging the beliefs, perceptions and opinions of someone. Most people are driven by a combination of beliefs that are largely ill formed, lack crucial information and can be irrational because of other circumstances. There is a lack of time, application of critical thinking and interest to sort through a complex situation, until the message deliverer holds up a mirror forcing people to face the issues. Who wouldn’t be wracked with anxiety, anger or fear with that prospect?

Contact ALCES for Lorne Fitch, P. Biol., 2006
2006

Phosphorus Sources and Sinks in Watersheds: A Review

Sandi Riemersma, Joanne Little, Gerald Ontkean, and Tanya Moskal-Hébert

Many regions around the world are concerned with phosphorus (P) and the risk it poses to water quality. Phosphorus is the limiting nutrient in most freshwater systems and, when in excess, it can accelerate eutrophication. Many countries have adopted some form of phosphorus management strategy to reduce the risk of phosphorus entering surface water from agricultural land. In Alberta, the Soil Phosphorus Limits Project was initiated in 1999 to develop soil phosphorus limits that will maintain or improve surface water quality by minimizing phosphorus loading from agricultural soils. With laboratory work complete, micro-watershed studies have recently been initiated to identify the relationship between dissolved phosphorus (DP) and soil test phosphorus (STP). However, on a larger scale there are a variety of phosphorus sources and sinks within watersheds that influence the phosphorus content of surface water. A key question is what proportion of phosphorus in surface water can be attributed to agricultural land, and what factors govern inconsistencies in the various sources and sinks. To better understand this complex issue, a review of literature pertaining to phosphorus sinks and sources was conducted. Research carried out in Alberta and elsewhere that attempted to integrate phosphorus fluxes on a watershed scale was assessed, and its implications on the Soil Phosphorus Limits Project discussed.

Contact ALCES for Sandi Riemersma, Joanne Little, Gerald Ontkean, and Tanya Moskal-Hébert, 2006
2006

From Science-Based Thresholds to Regulatory Limits: Implementation Issues for Cumulative Effects Management

Steve Kennett, Canadian Institute of Resources Law

Contact ALCES for Steve Kennett, Canadian Institute of Resources Law , 2006
2006

New Tools for New Times

Casey Vander Ploeg

The livability and economic prowess of our large cities is of fundamental importance to western Canada’s quality of life and long-term prosperity. The fate of our large cities is a key determinant of the future of our democracy, economy, and way of life. Understanding the constellation of issues that must be addressed for our cities to reach their potential and compete with the great cities of the world is the goal of the Canada West Foundation’s Western Cities Project. The project has been providing decision-makers and the public with timely and accessible information about urban issues and putting forward practical recommendations for addressing urban public policy challenges since 2000. With the generous support of the Cities of Calgary, Edmonton, Regina, Saskatoon, Vancouver, and Winnipeg, we have embarked on a new phase of the project that runs until the end of 2008. This new phase will include groundbreaking work on street level social problems, innovative options for funding urban infrastructure, the economies of western Canada's big cities, public transit, the connections between inner city areas and suburban areas, and the intergovernmental relationships that cut across these and other issues.

Contact ALCES for Casey Vander Ploeg, 2006
2006

Water Quality Study of Waiparous Creek, Fallentimber Creek and Ghost River

Daniel Andrews

Increased usage of the Ghost -Waiparous basin for random camping and off-highway vehicles (OHVs) has raised concerns among stakeholders that these activities are affecting water quality in the Ghost, Waiparous and Fallentimber Rivers. This report to Alberta Environment attempts to determine whether there is a linkage between these activities and water quality in these three rivers and documents baseline water quality prior to the implementation of an access management plan by the Alberta Government.

Contact ALCES for Daniel Andrews, 2006
2006

A Checklist for Evaluating Alberta's New Land-Use Initiatives

Steve Kennett

Public land management in Alberta is once again under scrutiny thanks to several policy initiatives and stakeholder consultations recently launched by the provincial government. Many stakeholder groups and individuals who pay attention to land-use issues must be wondering whether or not they should participate in this flurry of activity and how likely it is to achieve significant results.

Contact ALCES for Steve Kennett, 2006
2006

Energy and the Alberta Economy: Past and Future Impacts and Implications

Robert L. Mansell, Ron Schlenker

Alberta is in many respects at a crossroads. On the one hand complacency will almost certainly mean a dimming of the province’s long-term prosperity. Declines in the conventional oil and gas sector will significantly dampen growth and prosperity. There are no other sectors of the province’s economic base that could realistically expand sufficiently to offset significant declines in the dominant energy sector. On the other hand, visionary, strategic investments today can unlock non-conventional and other energy resources critical to securing a strong and prosperous long-term, sustainable future for the province. It is in this context that ISEEE has undertaken a series of papers focused on Alberta’s energy futures. The intent is to take a longer term look at the challenges, opportunities and choices and what they mean for Alberta’s future. This first paper provides both a retrospective and a prospective overview of the impacts of the oil and gas sector. It is intended to frame and highlight the longer term issues and provide an anchor for more detailed analysis in subsequent papers.

Contact ALCES for Robert L. Mansell, Ron Schlenker, 2006
2006

Relationships between Soil and Runoff Phosphorus in Small Alberta Watersheds

Joanne Little, Sheilah Nolan, Janna Casson, and Barry Olson

Field-scale relationships between soil test phosphorus (STP) and flow-weighted mean concentrations (FWMCs) of dissolved reactive phosphorus (DRP) and total phosphorus (TP) in runoff are essential for modeling phosphorus losses, but are lacking. The objectives of this study were (i) to determine the relationships between soil phosphorus (STP and degree of phosphorus saturation (DPS)) and runoff phosphorus (TP and DRP) from field-sized catchments under spring snowmelt and

Contact ALCES for Joanne Little, Sheilah Nolan, Janna Casson, and Barry Olson, 2006
2005

Integrated Landscape Management Tools for Sustainable Development Policy Making

Policy Research Initiative

Sustainable Development Briefing Note

Contact ALCES for Policy Research Initiative, 2005
2005

Integrated Landscape Management Modelling Workshop

Policy Research Institute

Sound land-use decision-making requires that social, economic, and environmental values be balanced, and that any repercussions within these three areas due to a decision taken in another be identified and taken into account. Land-use planning and environmental impact assessments (both aspects of integrated landscape management) could be improved, and the decision-making process better informed, through the use of integrated landscape management models (ILMM).

Contact ALCES for Policy Research Institute, 2005
Projects: 51-75 of 98
< 1 2 3 4 >
Items per page: 10 25 50