Land-Use References

Year Title (Author, Description) File Download
2012

Implications of changing environmetnal requiresments on oil sands royalties

E Valera and C.B. Powter

Examines relationships between elevating environmental costs of oilsands and government royalties

Contact ALCES for E Valera and C.B. Powter, 2012
2003

Scenario Planning: a Tool for Conservation in an Uncertain World

Garry Peterson, Graeme Cumming, and Stephen Carpenter

Conservation decisions about how, when, and where to act are typically based on our expectations for the future. When the world is highly unpredictable and we are working from a limited range of expectations, however, our expectations will frequently be proved wrong. Scenario planning offers a framework for developing more resilient conservation policies when faced with uncontrollable, irreducible uncertainty. A scenario in this context is an account of a plausible future. Scenario planning consists of using a few contrasting scenarios to explore the uncertainty surrounding the future consequences of a decision. Ideally, scenarios should be constructed by a diverse group of people for a single, stated purpose. Scenario planning can incorporate a variety of quantitative and qualitative information in the decision-making process. Often, consideration of this diverse information in a systemic way leads to better decisions. Furthermore, the participation of a diverse group of people in a systemic process of collecting, discussing, and analyzing scenarios builds shared understanding. The robustness provided by the consideration of multiple possible futures has served several groups well; we present examples from business, government, and conservation planning that illustrate the value of scenario planning. For conservation, major benefits of using scenario planning are (1) increased understanding of key uncertainties, (2) incorporation of alternative perspectives into conservation planning, and (3) greater resilience of decisions to surprise.

Contact ALCES for Garry Peterson, Graeme Cumming, and Stephen Carpenter, 2003
2006

Phosphorus Sources and Sinks in Watersheds: A Review

Sandi Riemersma, Joanne Little, Gerald Ontkean, and Tanya Moskal-Hébert

Many regions around the world are concerned with phosphorus (P) and the risk it poses to water quality. Phosphorus is the limiting nutrient in most freshwater systems and, when in excess, it can accelerate eutrophication. Many countries have adopted some form of phosphorus management strategy to reduce the risk of phosphorus entering surface water from agricultural land. In Alberta, the Soil Phosphorus Limits Project was initiated in 1999 to develop soil phosphorus limits that will maintain or improve surface water quality by minimizing phosphorus loading from agricultural soils. With laboratory work complete, micro-watershed studies have recently been initiated to identify the relationship between dissolved phosphorus (DP) and soil test phosphorus (STP). However, on a larger scale there are a variety of phosphorus sources and sinks within watersheds that influence the phosphorus content of surface water. A key question is what proportion of phosphorus in surface water can be attributed to agricultural land, and what factors govern inconsistencies in the various sources and sinks. To better understand this complex issue, a review of literature pertaining to phosphorus sinks and sources was conducted. Research carried out in Alberta and elsewhere that attempted to integrate phosphorus fluxes on a watershed scale was assessed, and its implications on the Soil Phosphorus Limits Project discussed.

Contact ALCES for Sandi Riemersma, Joanne Little, Gerald Ontkean, and Tanya Moskal-Hébert, 2006
2010

Integrated Place-Based Approaches for Sustainable Development

The Policy Research Institute

Place-based approaches address social, environmental or economic issues and thus offer the promise of operationalizing Sustainable Development (SD) principles. By focusing attention on policy issues as they play out in concrete geographic and community settings, place-based approaches provide a means to grasp complex and sometimes unexpected connections. This issue of Horizons provides a sense of the diversity of place-based approaches as they are applied in different policy areas, and identifies some of the lessons learned from an SD perspective.

Contact ALCES for The Policy Research Institute, 2010
2008

Potential of Rangelands to Sequester Carbon in Alberta

Eric Bremer

Contact ALCES for Eric Bremer, 2008
2002

Quantifying barrier effects of roads and seismic lines on movements of female woodland caribou in northeastern Alberta

Simon J. Dyer, Jack P. O’Neill, Shawn M. Wasel, and Stan Boutin

Linear developments such as roads, seismic lines, and pipeline rights-of-way are common anthropogenic features in the boreal forest of Alberta. These features may act as barriers to the movement of threatened woodland caribou (Rangifer tarandus caribou). Thirty-six woodland caribou were captured and fitted with global positioning system collars. These collared caribou yielded 43 415 locations during the 12-month study period. We compared rates of crossing roads and seismic lines with rates at which caribou crossed simulated roads and seismic lines created using ArcInfo GIS. Seismic lines were not barriers to caribou movements, whereas roads with moderate vehicle traffic acted as semipermeable barriers to caribou movements. The greatest barrier effects were evident during late winter, when caribou crossed actual roads 6 times less frequently than simulated road networks. Semipermeable barrier effects may exacerbate functional habitat loss demonstrated through avoidance behaviour. This novel approach represents an important development in the burgeoning field of road ecology and has great potential for use in validating animal-movement models.

Contact ALCES for Simon J. Dyer, Jack P. O’Neill, Shawn M. Wasel, and Stan Boutin, 2002
2008

Quantification of Extinction Risk: IUCN’s System for Classifying Threatened Species

G. Mace, N. Collar, K. Gaston, C. Milner-Gulland, and S. Stuart

The International Union for Conservation of Nature (IUCN) Red List of Threatened Species was increasingly used during the 1980s to assess the conservation status of species for policy and planning purposes. This use stimulated the development of a new set of quantitative criteria for listing species in the categories of threat: critically endangered, endangered, and vulnerable. These criteria, which were intended to be applicable to all species except microorganisms, were part of a broader system for classifying threatened species and were fully implemented by IUCN in 2000. The system and the criteria have been widely used by conservation practitioners and scientists and now underpin one indicator being used to assess the Convention on Biological Diversity 2010 biodiversity target. We describe the process and the technical background to the IUCN Red List system. The criteria refer to fundamental biological processes underlying population decline and extinction. But given major differences between species, the threatening processes affecting them, and the paucity of knowledge relating to most species, the IUCN system had to be both broad and flexible to be applicable to the majority of described species. The system was designed to measure the symptoms of extinction risk, and uses 5 independent criteria relating to aspects of population loss and decline of range size. A species is assigned to a threat category if it meets the quantitative threshold for at least one criterion. The criteria and the accompanying rules and guidelines used by IUCN are intended to increase the consistency, transparency, and validity of its categorization system, but it necessitates some compromises that affect the applicability of the system and the species lists that result. In particular, choices were made over the assessment of uncertainty, poorly known species, depleted species, population decline, restricted ranges, and rarity; all of these affect the way red lists should be viewed and used. Processes related to priority setting and the development of national red lists need to take account of some assumptions in the formulation of the criteria.

Contact ALCES for G. Mace, N. Collar, K. Gaston, C. Milner-Gulland, and S. Stuart, 2008
2003

Habitat Management in the Yukon Winter Range of the Little Rancheria Caribou Herd

J.Z. Adamczewski, R.F. Florkiewicz and V. Loewen

Woodland caribou (Rangifer tarandus caribou) ranges have shrunk substantially across North America due to the complex effects of human-caused habitat changes. As a result, COSEWIC1 listed nearly all woodland caribou populations in Canada as either Threatened or of Special Concern in May 2002. The Little Rancheria Herd (LRH) of caribou, which numbered about 1,000 in 1999, has a lowland forested winter range with some merchantable pine and spruce stands just west of Watson Lake, Yukon. Timber harvest in this range has to date (2003) been limited but the potential for habitat fragmentation is high. In this report we develop a long-term approach to habitat management of the Yukon LRH winter range, based on the herd’s habitat use and ecology, together with studies and management of woodland caribou elsewhere. The direct and indirect effects of development on woodland caribou include: • loss of fragile, slow-growing lichens, the • primary caribou winter forage, • avoidance of disturbed areas, particularly those with heavy traffic, • increased hunter access and harvest, • collisions with vehicles, • increased access to remote caribou range for predators, primarily wolves, and • improved habitat suitability for other • ungulates like moose. Where these other prey sustain elevated wolf numbers, caribou numbers often decline. Alberta studies showed that caribou were more likely to be killed by wolves in areas within 250 m of all recent cut-blocks and other developments, and that caribou used these areas much less than undisturbed forests. The development “footprint” was defined as the proportion of the land-base within such avoidance zones. Where the development footprint in a caribou range was 50% or greater, the population was likely to be declining at 1–3% annually, even with little or no hunting. Threshold levels limiting the footprint in caribou range have been proposed as a management option for the Yukon. Management guidelines for caribou ranges in British Columbia and Ontario focus on protecting critical caribou habitat from development and access, and allow carefully managed development in less sensitive caribou range. Three management zones in the Yukon LRH winter range were identified in the 1990s based first on reconnaissance surveys and later confirmed by radio-collar locations: a heavily used core, a surrounding extended range, and a migration corridor. Although just 3.6% of the land-base had been cut for timber by 2002, the development footprint in the LRH Yukon winter range was 16% overall, with 18% in the core, 18% in the extended range, and 5% in the migration zone. Like most Yukon caribou herds, the LRH is hunted. The estimated annual harvest rate averaged 5% from 1992 to 2002. To enable continued hunting of this herd, and to allow for periodic range losses to fire, development in this winter range must be kept at levels well below the 50% footprint values linked to serious declines in Alberta. The suggested management approach for the LRH Yukon winter range is based on British Columbia models, Alberta studies, and recent reports proposing thresholds for development footprint in caribou range. The main points of the approach are: • withdraw the core winter range from further logging or development, • establish a connected reserve network of high-quality habitat in the extended range and migration zone, and • establish maximum development footprint values of 30% in the extended range and 25% in the migration zone.

Contact ALCES for J.Z. Adamczewski, R.F. Florkiewicz and V. Loewen , 2003
2009

Regional Strategic Environmental Assessment in Canada: Principles and Guidance

Canadian Council of Ministers of the Environment

Contact ALCES for Canadian Council of Ministers of the Environment, 2009
2007

Review of Alberta Environment’s Ecosystem Goods and Services Assessment - Southern Alberta Phase 2 Report

Management and Solutions in Environmental Science

Alberta Environment (AENV) requested that Management and Solutions in Environmental Science (MSES) review and assess their Ecosystem Goods and Services Assessment Report (EGS Assessment). The peer review provides comments on the main elements of the EGS Assessment. We base our review on the stated goal of the Ecosystem Services Project, namely that the “ultimate aim is … to deliver the right information to policy developers and decision makers…”. Specifically, MSES evaluates the overall framework of the EGS Assessment, addresses the questions posed by AENV, and provides recommendations for further discussion. The following overarching comments or points are made on the EGS Assessment. More detailed responses to specific questions can be found in the body of our report. A list of recommendations for consideration is also provided. 1. The EGS Assessment presents a useful framework for assessing goods and services that are provided by landscape parameters, which are composed of a mosaic of habitats and a diversity of wildlife that uses them. However, for discussion we would like to highlight the anchoring question of this work: “How do ecosystem services support the maintenance of natural and anthropogenic assets?” . A service supporting an asset is only meaningful from an anthropogenic economic perspective, wherein a service is maintained strictly for its value to humans. From a natural ecosystem perspective, is it not the asset that supports the service rather than the other way around? The wording of the question has a major impact on how one views the direction of dependencies. The way that all spreadsheet tables are set up in the document suggests that a service maintains an asset. Using a cow and produced milk as an example, the milk is the result of the condition of the cow: no cow – no milk; poor cow – little milk; good cow – plenty of milk. The authors of the report ask questions from an economic perspective (translated): how does the milk support the maintenance of the cow? Therefore, all spreadsheet tables must be read from assets to services. However, ecological systems include parameters that may or may not fit neatly into human economic systems. For example, “How do Prairie Wetlands maintain the service of water regulation?” While sometimes there are feedbacks from the services to the assets, this important point of critique has a large impact on the overall assessment. In addition to summing-up and reporting the services, the values of the assets (which, in part, should consider asset condition) should be summed-up also. 2. The world’s ecosystem services have been under-valued by several orders of magnitude. Many current economists’ approaches to put dollar values to natural assets are highly inadequate. Civilizations died out (e.g. Sumerians in Mesopotamia) because one single element of the ecosystem (soil) was degraded (salinization) to such an extent that food production was severely decimated. In the given example, what was the value of the soil? Is the value of the soil in this example not close to infinite? This idea is corroborated by Costanza et al. (1997), who state that in one sense the total value of ecosystem services to the economy is infinite. 3. In addition to the problem of evaluating an economic service provided by natural assets, there is an emotional or spiritual service that is extremely difficult to express in monetary terms; the human perception of well-being provided by the surroundings. For example, what would the quality of our lives be without rivers and lakes? Or with only polluted rivers and lakes? Natural assets provide services that we need for our spiritual survival as a whole. 4. While the authors have undertaken a literature review (200 titles), it is not necessarily exhaustive. It is likely that there are many more publications that could be reviewed with potential findings that could be incorporated into the southern Alberta EGS Assessment framework. The EGS Assessment is very important and complex, and additional work is required to fill in many of the existing gaps. 5. One of the objectives of the assessment is to “Provide an understanding of the value of high quality ecosystems in relation to economic production in southern Alberta,…”(pg 5). Figure 3-1 of the report (pg 12) presents a conceptual framework of the function of ecosystem services. However, the figure does not carry a clear message, as it does not provide specific details or an explanation of the different types of arrows. No other framework of value assessment of ecosystems is provided. De Groot et al. (2002) in Barg and Swanson (2004) provide one such figure (see Figure 1, this report) that could be used as a starting point for the framework (written for Agriculture and Agri-Food Canada). A clear division of ecological, socio-cultural and economic values could facilitate the value assessment of ecosystem services in southern Alberta.

Contact ALCES for Management and Solutions in Environmental Science, 2007
Projects: 71-80 of 98
< 1 2 3 4 5 6 7 8 9 10 >
Items per page: 10 25 50