Land-Use References

Year Title (Author, Description) File Download
2002

Quantifying barrier effects of roads and seismic lines on movements of female woodland caribou in northeastern Alberta

Simon J. Dyer, Jack P. O’Neill, Shawn M. Wasel, and Stan Boutin

Linear developments such as roads, seismic lines, and pipeline rights-of-way are common anthropogenic features in the boreal forest of Alberta. These features may act as barriers to the movement of threatened woodland caribou (Rangifer tarandus caribou). Thirty-six woodland caribou were captured and fitted with global positioning system collars. These collared caribou yielded 43 415 locations during the 12-month study period. We compared rates of crossing roads and seismic lines with rates at which caribou crossed simulated roads and seismic lines created using ArcInfo GIS. Seismic lines were not barriers to caribou movements, whereas roads with moderate vehicle traffic acted as semipermeable barriers to caribou movements. The greatest barrier effects were evident during late winter, when caribou crossed actual roads 6 times less frequently than simulated road networks. Semipermeable barrier effects may exacerbate functional habitat loss demonstrated through avoidance behaviour. This novel approach represents an important development in the burgeoning field of road ecology and has great potential for use in validating animal-movement models.

Contact ALCES for Simon J. Dyer, Jack P. O’Neill, Shawn M. Wasel, and Stan Boutin, 2002
2008

Quantification of Extinction Risk: IUCN’s System for Classifying Threatened Species

G. Mace, N. Collar, K. Gaston, C. Milner-Gulland, and S. Stuart

The International Union for Conservation of Nature (IUCN) Red List of Threatened Species was increasingly used during the 1980s to assess the conservation status of species for policy and planning purposes. This use stimulated the development of a new set of quantitative criteria for listing species in the categories of threat: critically endangered, endangered, and vulnerable. These criteria, which were intended to be applicable to all species except microorganisms, were part of a broader system for classifying threatened species and were fully implemented by IUCN in 2000. The system and the criteria have been widely used by conservation practitioners and scientists and now underpin one indicator being used to assess the Convention on Biological Diversity 2010 biodiversity target. We describe the process and the technical background to the IUCN Red List system. The criteria refer to fundamental biological processes underlying population decline and extinction. But given major differences between species, the threatening processes affecting them, and the paucity of knowledge relating to most species, the IUCN system had to be both broad and flexible to be applicable to the majority of described species. The system was designed to measure the symptoms of extinction risk, and uses 5 independent criteria relating to aspects of population loss and decline of range size. A species is assigned to a threat category if it meets the quantitative threshold for at least one criterion. The criteria and the accompanying rules and guidelines used by IUCN are intended to increase the consistency, transparency, and validity of its categorization system, but it necessitates some compromises that affect the applicability of the system and the species lists that result. In particular, choices were made over the assessment of uncertainty, poorly known species, depleted species, population decline, restricted ranges, and rarity; all of these affect the way red lists should be viewed and used. Processes related to priority setting and the development of national red lists need to take account of some assumptions in the formulation of the criteria.

Contact ALCES for G. Mace, N. Collar, K. Gaston, C. Milner-Gulland, and S. Stuart, 2008
2003

Habitat Management in the Yukon Winter Range of the Little Rancheria Caribou Herd

J.Z. Adamczewski, R.F. Florkiewicz and V. Loewen

Woodland caribou (Rangifer tarandus caribou) ranges have shrunk substantially across North America due to the complex effects of human-caused habitat changes. As a result, COSEWIC1 listed nearly all woodland caribou populations in Canada as either Threatened or of Special Concern in May 2002. The Little Rancheria Herd (LRH) of caribou, which numbered about 1,000 in 1999, has a lowland forested winter range with some merchantable pine and spruce stands just west of Watson Lake, Yukon. Timber harvest in this range has to date (2003) been limited but the potential for habitat fragmentation is high. In this report we develop a long-term approach to habitat management of the Yukon LRH winter range, based on the herd’s habitat use and ecology, together with studies and management of woodland caribou elsewhere. The direct and indirect effects of development on woodland caribou include: • loss of fragile, slow-growing lichens, the • primary caribou winter forage, • avoidance of disturbed areas, particularly those with heavy traffic, • increased hunter access and harvest, • collisions with vehicles, • increased access to remote caribou range for predators, primarily wolves, and • improved habitat suitability for other • ungulates like moose. Where these other prey sustain elevated wolf numbers, caribou numbers often decline. Alberta studies showed that caribou were more likely to be killed by wolves in areas within 250 m of all recent cut-blocks and other developments, and that caribou used these areas much less than undisturbed forests. The development “footprint” was defined as the proportion of the land-base within such avoidance zones. Where the development footprint in a caribou range was 50% or greater, the population was likely to be declining at 1–3% annually, even with little or no hunting. Threshold levels limiting the footprint in caribou range have been proposed as a management option for the Yukon. Management guidelines for caribou ranges in British Columbia and Ontario focus on protecting critical caribou habitat from development and access, and allow carefully managed development in less sensitive caribou range. Three management zones in the Yukon LRH winter range were identified in the 1990s based first on reconnaissance surveys and later confirmed by radio-collar locations: a heavily used core, a surrounding extended range, and a migration corridor. Although just 3.6% of the land-base had been cut for timber by 2002, the development footprint in the LRH Yukon winter range was 16% overall, with 18% in the core, 18% in the extended range, and 5% in the migration zone. Like most Yukon caribou herds, the LRH is hunted. The estimated annual harvest rate averaged 5% from 1992 to 2002. To enable continued hunting of this herd, and to allow for periodic range losses to fire, development in this winter range must be kept at levels well below the 50% footprint values linked to serious declines in Alberta. The suggested management approach for the LRH Yukon winter range is based on British Columbia models, Alberta studies, and recent reports proposing thresholds for development footprint in caribou range. The main points of the approach are: • withdraw the core winter range from further logging or development, • establish a connected reserve network of high-quality habitat in the extended range and migration zone, and • establish maximum development footprint values of 30% in the extended range and 25% in the migration zone.

Contact ALCES for J.Z. Adamczewski, R.F. Florkiewicz and V. Loewen , 2003
2009

Regional Strategic Environmental Assessment in Canada: Principles and Guidance

Canadian Council of Ministers of the Environment

Contact ALCES for Canadian Council of Ministers of the Environment, 2009
2007

Review of Alberta Environment’s Ecosystem Goods and Services Assessment - Southern Alberta Phase 2 Report

Management and Solutions in Environmental Science

Alberta Environment (AENV) requested that Management and Solutions in Environmental Science (MSES) review and assess their Ecosystem Goods and Services Assessment Report (EGS Assessment). The peer review provides comments on the main elements of the EGS Assessment. We base our review on the stated goal of the Ecosystem Services Project, namely that the “ultimate aim is … to deliver the right information to policy developers and decision makers…”. Specifically, MSES evaluates the overall framework of the EGS Assessment, addresses the questions posed by AENV, and provides recommendations for further discussion. The following overarching comments or points are made on the EGS Assessment. More detailed responses to specific questions can be found in the body of our report. A list of recommendations for consideration is also provided. 1. The EGS Assessment presents a useful framework for assessing goods and services that are provided by landscape parameters, which are composed of a mosaic of habitats and a diversity of wildlife that uses them. However, for discussion we would like to highlight the anchoring question of this work: “How do ecosystem services support the maintenance of natural and anthropogenic assets?” . A service supporting an asset is only meaningful from an anthropogenic economic perspective, wherein a service is maintained strictly for its value to humans. From a natural ecosystem perspective, is it not the asset that supports the service rather than the other way around? The wording of the question has a major impact on how one views the direction of dependencies. The way that all spreadsheet tables are set up in the document suggests that a service maintains an asset. Using a cow and produced milk as an example, the milk is the result of the condition of the cow: no cow – no milk; poor cow – little milk; good cow – plenty of milk. The authors of the report ask questions from an economic perspective (translated): how does the milk support the maintenance of the cow? Therefore, all spreadsheet tables must be read from assets to services. However, ecological systems include parameters that may or may not fit neatly into human economic systems. For example, “How do Prairie Wetlands maintain the service of water regulation?” While sometimes there are feedbacks from the services to the assets, this important point of critique has a large impact on the overall assessment. In addition to summing-up and reporting the services, the values of the assets (which, in part, should consider asset condition) should be summed-up also. 2. The world’s ecosystem services have been under-valued by several orders of magnitude. Many current economists’ approaches to put dollar values to natural assets are highly inadequate. Civilizations died out (e.g. Sumerians in Mesopotamia) because one single element of the ecosystem (soil) was degraded (salinization) to such an extent that food production was severely decimated. In the given example, what was the value of the soil? Is the value of the soil in this example not close to infinite? This idea is corroborated by Costanza et al. (1997), who state that in one sense the total value of ecosystem services to the economy is infinite. 3. In addition to the problem of evaluating an economic service provided by natural assets, there is an emotional or spiritual service that is extremely difficult to express in monetary terms; the human perception of well-being provided by the surroundings. For example, what would the quality of our lives be without rivers and lakes? Or with only polluted rivers and lakes? Natural assets provide services that we need for our spiritual survival as a whole. 4. While the authors have undertaken a literature review (200 titles), it is not necessarily exhaustive. It is likely that there are many more publications that could be reviewed with potential findings that could be incorporated into the southern Alberta EGS Assessment framework. The EGS Assessment is very important and complex, and additional work is required to fill in many of the existing gaps. 5. One of the objectives of the assessment is to “Provide an understanding of the value of high quality ecosystems in relation to economic production in southern Alberta,…”(pg 5). Figure 3-1 of the report (pg 12) presents a conceptual framework of the function of ecosystem services. However, the figure does not carry a clear message, as it does not provide specific details or an explanation of the different types of arrows. No other framework of value assessment of ecosystems is provided. De Groot et al. (2002) in Barg and Swanson (2004) provide one such figure (see Figure 1, this report) that could be used as a starting point for the framework (written for Agriculture and Agri-Food Canada). A clear division of ecological, socio-cultural and economic values could facilitate the value assessment of ecosystem services in southern Alberta.

Contact ALCES for Management and Solutions in Environmental Science, 2007
2007

Road Sediment Production and Delivery: Processes and Management

Lee MacDonald and Drew B.R. Coe

Unpaved roads are often considered to be the predominant sediment source in forested catchments. In steep, wet climates roads can cause a 10- to 300-fold increase in the landslide erosion rate, and this increase is due to the effects of roads on hillslope flow paths and the structural integrity of hillslopes. The proportion of sediment that is delivered to the stream will generally be very high for road-induced failures in hollows and inner gorge landforms, and much lower for planar hillslope failures. The pulsed input of sediment from roadinduced landsliding can greatly alter stream channel habitat and morphology. Unpaved roads can increase sediment production rates by more than an order of magnitude as a result of road surface erosion. The high surface erosion rate stems from the generation of surface runoff from the highly compacted road travelway, the lack of surface cover, and the availability of fine sediment due to traffic and road maintenance procedures such as grading. Sediment delivery to streams occurs primarily at road-stream crossings and secondarily by road-induced gullies. The proportion of the road network that is connected to the stream network is primarily a function of mean annual precipitation (R2=0.9), and is increased by about 40% in the absence of any engineered drainage structures. The chronic input of the fine sediment from roads can have adverse effects on freshwater aquatic ecosystems as well as coral reefs. Our present understanding of road surface erosion processes is good, but our models to predict road surface erosion and landsliding are much better for relative than absolute predictions. Climate change can greatly increase road-induced landslides and road surface erosion by increasing the magnitude of large storm events and increasing the amount of rain relative to snow. Extensive field surveys also show that relatively few road segments typically generate most of the road-related increases in sediment yields. Road surface erosion, the risk of road-induced landslides, and road sediment delivery can be greatly decreased by improved road designs and maintenance practices. Hence the greatest needs are to develop and provide land managers with the tools for identifying high-risk segments, and then to make the necessary investments in road reconstruction and restoration.

Contact ALCES for Lee MacDonald and Drew B.R. Coe, 2007
2003

Spatial Analysis of Rural Residential Expansion in South-Western Alberta

Miistakis Institute for the Rockies

Contact ALCES for Miistakis Institute for the Rockies, 2003
2007

Scenario analysis in environmental impact assessment: Improving explorations of the future

Peter Duinker and Lorne Greig

Scenarios and scenario analysis have become popular approaches in organizational planning and participatory exercises in pursuit of sustainable development. However, they are little used, at least in any formal way, in environmental impact assessment (EIA). This is puzzling because EIA is a process specifically dedicated to exploring options for more-sustainable (i.e., less environmentally damaging) futures. In this paper, we review the state of the art associated with scenarios and scenario analysis, and describe two areas where scenario analysis could be particularly helpful in EIA: (a) in defining future developments for cumulative effects assessment; and (b) in considering the influence of contextual change, e.g. climate change, on impact forecasts for specific projects. We conclude by encouraging EIA practitioners to learn about the promise of scenario-based analysis and implement scenario-based methods so that EIA can become more effective in fostering sustainable development. Environmental Impact Assessment Review 27 (2007)

Contact ALCES for Peter Duinker and Lorne Greig, 2007
2010

Triage for conserving populations of threatened species: The case of woodland caribou in Alberta

Richard R. Schneider, Grant Hauer, W.L. (Vic) Adamowicz, Stan Boutin

Prioritization of conservation efforts for threatened and endangered species has tended to focus on factors measuring the risk of extirpation rather than the probability of success and cost. Approaches such as triage are advisable when three main conditions are present: insufficient capacity exists to adequately treat all patients, patients are in a critical state and cannot wait until additional capacity becomes available, and patients differ in their likely outcome and/or the amount of treatment they require. The objective of our study was to document the status of woodland caribou (Rangifer tarandus) herds in Alberta, Canada, with respect to these three conditions and to determine whether a triage approach might be warranted. To do this we modeled three types of recovery effort – protection, habitat restoration, and wolf control – and estimated the opportunity cost of recovery for each herd. We also assessed herds with respect to a suite of factors linked to long-term viability. We found that all but three herds will decline to critical levels (<10 animals) within approximately 30 years if current population trends continue. The opportunity cost of protecting all ranges by excluding new development, in terms of the net present value of petroleum and forestry resources, was estimated to be in excess of 100 billion dollars (assuming no substitution of activity outside of the ranges). A habitat restoration program applied to all ranges would cost several hundred million dollars, and a provincial-scale wolf control program would cost tens of millions of dollars. Recovery costs among herds varied by an order of magnitude. Herds also varied substantially in terms of their potential viability. These findings suggest that woodland caribou in Alberta meet the conditions whereby triage should be considered as an appropriate conservation strategy.

Contact ALCES for Richard R. Schneider, Grant Hauer, W.L. (Vic) Adamowicz, Stan Boutin , 2010
2006

From Science-Based Thresholds to Regulatory Limits: Implementation Issues for Cumulative Effects Management

Steve Kennett, Canadian Institute of Resources Law

Contact ALCES for Steve Kennett, Canadian Institute of Resources Law , 2006
2008

Sediment Production and Delivery from Forest Roads and Off-Highway Vehicle Trails in the Upper South Platte River Watershed, Colorado

Matthew J. Welsh

Sediment is a principal cause of impairment to surface water quality. Erosion is a particularly important environmental issue in the Upper South Platte River (USPR) watershed of Colorado because it is the primary source of drinking water for Denver, has a high-value fishery, and several stream reaches are impaired by high levels of sediment. Unpaved roads are often considered a dominant source of sediment in forested watersheds, and off-highway vehicle (OHV) trails are another potentially important but largely unquantified sediment source. The objectives of this study were to: (1) quantify sediment production and delivery from forest road and OHV trail segments in the USPR watershed; (2) test the accuracy of WEPP:Road, SEDMODL2, and two empirical models for predicting sediment production from roads and OHV trails; and (3) compare sediment production, sediment delivery, and sediment yields from forest roads and OHV trails. Rainfall, site characteristics, and sediment production were measured on 14-22 native surface road segments from 2001 to 2006, and these data were used to test the accuracy of WEPP:Road and SEDMODL2. Empirical models for predicting storm-based and annual sediment production were developed from the first four years of data; the last two years of data were used for model testing. Similar measurements on 5-10 OHV trail segments from 2005 to 2006 were used to test WEPP:Road and SEDMODL2. Sediment delivery was assessed by detailed surveys along 17 km of roads and 10 km of OHV trails. In 2006 mean sediment production from the 10 OHV trail segments was 18.5 kg m-2 yr-1, or six times the mean value from the 21 road segments. The percentage of OHV trails connected to streams was 24%, or 70% higher than for roads, largely because more OHV trails were in the valley bottoms. None of the models accurately predicted sediment production from roads or OHV trails, but the performance of SEDMODL2 was greatly improved by calibrating the geology and traffic factors to the study area. SEDMODL2 also could be improved by adjusting the slope factor, better accounting for rill density on native surface roads, and making the rainfall factor dependent on rainfall erosivity rather than rainfall depth. WEPP:Road could be improved by making sediment production decrease rather than increase with higher soil rock content, and increasing the effect of a categorical change from no traffic to low traffic. Road density in the study area is 0.6 km km-2, or three times the density of OHV trails. Multiplying unit area sediment production normalized by summer erosivity times the density, mean active width, and percent connectivity indicates that roads and OHV trails are respectively delivering approximately 1.1 Mg km-2 and 0.8 Mg km-2 of sediment to the stream network per year. Sediment delivery to streams can be reduced by locating roads and OHV trails out of valley bottoms and off steep hillslopes, decreasing segment lengths, and reducing segment slopes.

Contact ALCES for Matthew J. Welsh, 2008
1990

Sediment Production from Forest Roads with Wheel Ruts

Randy b. Foltz and Edward R. Burroughs, Jr.

Artificial rainfall was applied to two sets of paired plots 30.5 m long by 1.52 m wide, each set on a different soil type. One plot in each set contained a wheel rut while the other did not. Measurements of water and sediment yield on rutted plots showed sediment production declined with cumulative runoff while unrutted plots did not show a significant sediment depletion. This difference was a result of concentrated flow versus sheet flow.

Contact ALCES for Randy b. Foltz and Edward R. Burroughs, Jr., 1990
2012

Institutional requirements for watershed cumulative effects assessment and management: Lessons from a Canadian trans-boundary watershed

Poornima Sheelanere, Bram F. Noble, Robert J. Patrick

Watersheds are under increasing stress from the cumulative environmental effects of water and land use disturbances caused by both anthropogenic and natural causes. Yet, while the science of watershed cumulative effects assessment and management (CEAM) is advancing much less is known about the institutional and capacity requirements to implement and sustain watershed CEAM. Based on lessons from a transboundary watershed in western Canada this paper presents eight institutional requirements, or requisites, for the implementation of watershed-based CEAM. We suggest that effective watershed CEAM requires government leadership to move beyond the current inward focus on project approvals toward an outward focus on the cumulative effects of all disturbances in a watershed; complementary monitoring programs at the project and watershed scale, and a means to ensure the sharing of monitoring data across watershed stakeholders; and a nested planning framework to coordinate watershed planning objectives with individual project impact assessment and decision making. Results of this paper show that simply scaling up from individual project-based assessments to the watershed scale exposes many institutional constraints that can impede CEAM action.

Contact ALCES for Poornima Sheelanere, Bram F. Noble, Robert J. Patrick, 2012
2012

Shell Jackpine Mine Expansion Project

Oil Sands Environmental Coalition

The Panel’s responsibilities to determine if the Project is in the public interest and determine if it will create significant adverse effects, is onerous. We believe it would assist the Panel in discharging its responsibility to protect the public interest and make its assessment of the residual impacts, if it ensured that mitigation will, in fact, be implemented and knew the status of its previous recommendations, and commitments made by the proponent on which the Panel and ERCB relied upon – particularly as it relates to Shell’s projects and the projects in the Muskeg River basin.

Contact ALCES for Oil Sands Environmental Coalition, 2012
1999

Soil Carbon Sequestration and Land-Use Change: Processes and Potential

W. M. Post, and K. C. Kwon

When agricultural land is no longer used for cultivation and allowed to revert to natural vegetation or replanted to perennial vegetation, soil organic carbon can accumulate by processes that essentially reverse some of the effects responsible for soil organic carbon losses from when the land was converted from perennial vegetation.We discuss the essential elements of what is known about soil organic matter dynamics that may result in enhanced soil carbon sequestration with changes in land-use and soil management.We review literature that reports changes in soil organic carbon after changes in land-use that favor carbon accumulation. This data summary provides a guide to approximate rates of SOC sequestration that are possible with management, and indicates the relative importance of some factors that influence the rates of organic carbon sequestration in soil. There is a large amount of variation in rates and the length of time that carbon may accumulate in soil that are related to the productivity of the recovering vegetation, physical and biological conditions in the soil, and the past history of soil organic carbon inputs and physical disturbance. Maximum rates of C accumulation during the early aggrading stage of perennial vegetation growth, while substantial, are usually much less than 100 g C m  y   . Average rates of accumulation are similar for forest or grassland establishment: 33.8 g C m y    and 33.2 g C m  y   respectively. These observed rates of soil organic C accumulation, when combined with the small amount of land area involved, are insufficient to account for a significant fraction of the missing C in the global carbon cycle as accumulating in the soils of formerly agricultural land.

Contact ALCES for W. M. Post, and K. C. Kwon, 1999
2007

Modelling potential effects of angling on recovery of westslope cutthroat trout (Oncorhynchus clarkii lewisi) in Alberta

Michael Sullivan

Alberta’s native form of cutthroat trout, westslope cutthroat trout (Oncorhynchus clarkii lewisi), was listed in 2006 as a threatened species under the federal Species at Risk Act. Amongst other legal requirements, this action requires that an assessment of threats be conducted to determine what activities are acceptable and unacceptable with respect to the maintenance and recovery of populations of these fish. Sport angling for cutthroat trout and other species is a popular activity throughout this fish’s habitat in Alberta and has the potential to harm this species’ recovery. To investigate this potential harm, the possible effects of a variety of angling scenarios (e.g., different levels of angler effort and regulations) on stream populations of cutthroat trout were simulated using a population dynamics computer model. The results of these simulations suggested that recovery of depressed cutthroat trout populations could occur under scenarios of limited and low angler effort, and no directed harvest (i.e., catch-and-release angling). Once recovered, however, healthy populations of westslope cutthroat trout may be maintained with catch-and-release angling with moderate fishing effort. Angling regulations that allow harvest of cutthroat trout are unlikely to either maintain or recover most populations unless angler effort is controlled. Incidental mortality (either through accidental hooking mortality or illegal harvest through misidentification of trout species) in these simulations was an important factor in population maintenance and recovery. This suggests that minimizing these sources of mortality may be an important management concern for this species.

Contact ALCES for Michael Sullivan, 2007
2005

Integrated Landscape Management Tools for Sustainable Development Policy Making

Policy Research Initiative

Sustainable Development Briefing Note

Contact ALCES for Policy Research Initiative, 2005
2011

The Anthropocene: From Global Change to Planetary Stewardship

Will Steffen, A ° sa Persson, Lisa Deutsch, Jan Zalasiewicz, Mark Williams, Katherine Richardson, Ca

Over the past century, the total material wealth of humanity has been enhanced. However, in the twentyfirst century, we face scarcity in critical resources, the degradation of ecosystem services, and the erosion of the planet’s capability to absorb our wastes. Equity issues remain stubbornly difficult to solve. This situation is novel in its speed, its global scale and its threat to the resilience of the Earth System. The advent of the Anthropence, the time interval in which human activities now rival global geophysical processes, suggests that we need to fundamentally alter our relationship with the planet we inhabit. Many approaches could be adopted, ranging from geoengineering solutions that purposefully manipulate parts of the Earth System to becoming active stewards of our own life support system. The Anthropocene is a reminder that the Holocene, during which complex human societies have developed, has been a stable, accommodating environment and is the only state of the Earth System that we know for sure can support contemporary society. The need to achieve effective planetary stewardship is urgent. As we go further into the Anthropocene, we risk driving the Earth System onto a trajectory toward more hostile states from which we cannot easily return.

Contact ALCES for Will Steffen, A ° sa Persson, Lisa Deutsch, Jan Zalasiewicz, Mark Williams, Katherine Richardson, Ca, 2011
1982

The Sediment Delivery Problem

D.E. Walling

The linking of on-site rates of erosion and soil loss within a drainage basin to the sediment yield at the basin outlet, and improved knowledge and representation of the associated processes of sediment delivery, represent a major research need within the field of erosion and sedimentation and also an important scale problem in drainage basin studies. This paper reviews the limitations of the sediment delivery ratio concept by considering the problems of temporal and spatial lumping and its blackbox nature. Some recent advances in our understanding of the sediment delivery system and its modelling are described and the lack of empirical investigations is highlighted. The significance of recent concern for the role of sediments in the transport of nutrients and contaminants to sediment delivery studies is introduced, and the need for further work in this field is emphasized.

Contact ALCES for D.E. Walling, 1982
2012

CUMULATIVE EFFECTS THRESHOLDS FOR ARCTIC GRAYLING IN THE WAPITI RIVER WATERSHED

Adam Paul Norris

Intensity and types of land use have changed rapidly in the last century and in north-western Alberta this has coincided with the decline of Wapiti River watershed Arctic Grayling (Thymallus arcticus) populations. Data on diurnal dissolved oxygen (DO), chemical and physical stream habitat data were collected in nine sub-watersheds of the Wapiti River with historically abundant Arctic Grayling populations. Levels and fluctuations of DO and temperature were related to the status of populations; five of the nine streams had higher temperatures and lower DO during summer, anoxic conditions during winter and extirpated populations. Amount of disturbed land and road density within sub-watersheds were inversely related to DO levels and population status. Cumulative effects modelling suggests a possible mechanism for these relationships is increased phosphorous runoff, leading to impaired habitat. These relationships and thresholds may be used as a management tool to maintain or restore Arctic Grayling and other stream fishes.

Contact ALCES for Adam Paul Norris, 2012
2007

Protecting Water, Producing Gas: Minimizing the Impact of Coalbed Methane and Other Natural Gas Production on Alberta’s Groundwater

Mary Griffiths

Contact ALCES for Mary Griffiths, 2007
2006

Water Quality Study of Waiparous Creek, Fallentimber Creek and Ghost River

Daniel Andrews

Increased usage of the Ghost -Waiparous basin for random camping and off-highway vehicles (OHVs) has raised concerns among stakeholders that these activities are affecting water quality in the Ghost, Waiparous and Fallentimber Rivers. This report to Alberta Environment attempts to determine whether there is a linkage between these activities and water quality in these three rivers and documents baseline water quality prior to the implementation of an access management plan by the Alberta Government.

Contact ALCES for Daniel Andrews, 2006
2003

Export Coefficients for Total Phosphorus, Total Nitrogen and Total Suspended Solids in the Southern Alberta Region - A Review of Literature

Y. Jeje

The objectives of the literature review were to: A) Identify and summarize literature that provide quantitative information on Total Nitrogen (TN), Total phosphorus (TP) and Total Suspended Solids (TSS) export coefficients in the Southern Alberta region, B) Identify and summarize literature that provide quantitative information on TN, TP and TSS export coefficients in the following landscape cover categories provided by Alberta Environment, Calgary: Native Prairie (9) classes, Agriculture (6) classes, Forest Area (7) classes and Miscellaneous (4) classes for input in the ALCES computer simulation model currently under development. C) Prepare a report that presents a descriptive inventory and analysis of literature including a list of all relevant literature reviewed and abstracts of selected literature appropriately categorized, and provide a discussion of data generated. D) Identify and summarize literature that provides quantitative information on TN, TP and TSS export coefficients for Non-native Land Use categories in the Southern Alberta region.

Contact ALCES for Y. Jeje, 2003
Projects: 76-98 of 98
< 1 2 3 4
Items per page: 10 25 50