Land-Use References

Year Title (Author, Description) File Download

Ecological basis for stand management: A synthesis of ecological responses to wildfire and harvesting

Samantha Song (editor)

Public concern over the ecological impacts of clearcutting and loss of old growth forest, as well as the increased knowledge of natural disturbance dynamics of forests, has prompted a number of agencies in North America to re-evaluate forest practices. Increasingly, in an attempt to address these concerns, many government departments and corporations have released new policies and guidelines to supplement or replace the current suite of harvesting practices with a broader range of approaches that are intended to use natural disturbance as a model. Generally, the intent of the natural disturbance template is that biotic systems adapted to natural disturbance may be better managed under a harvesting regime that attempts to emulate those disturbances rather than under existing clearcutting practices. This represents a different focus for altering harvest practices than models that aim to protect old forest seral stages, although there are many overlapping components. The objective of the Ecological Basis for Stand Management project was to review, synthesize, and evaluate the ecological basis for harvest practices at the stand level in boreal mixedwood forests. Our approach critically assessed two strategies for forest management: management for old growth seral stages, and management to emulate natural disturbances, particularly wildfire. Using a chronosequence approach and with some re-analysis of existing data, we reviewed the ecological effects of wildfires on forests, then compared with clearcutting and retention of residual trees. We compared ecological elements at each seral stage to old seral stage forests. We also documented existing information on biotic responses to riparian areas and forest edges.

Contact ALCES for Samantha Song (editor), 2002

Ecological Infrastructure Mapping - Southern Alberta Region

02 Planning + Design Inc.

An assessment of ecosystem goods and services (EGS) in southern Alberta was initiated in 2006 by Alberta Environment. Ecosystem services are the conditions and processes through which natural ecosystems, and the species that make them up, sustain and fulfill human life (Daily 1997). The current study builds on the first two project phases by expanding the discussion of landscape patterns required to sustain the provision of ecosystem goods and services based on an identification of ecological infrastructure in the Southern Alberta region. Ecological infrastructure refers to the core features of a network that provides ecosystem services (Tzoulas et al. 2007): in this case, in the Southern Alberta region. At a regional scale, it includes the system of structural and functional terrestrial and aquatic landscape features such as clean water and habitat (Quinn, unpublished work, 2007). Components of ecological infrastructure chosen for mapping in the scope and scale of the current project include: 1. Stream corridors 2. Natural vegetation patches and stepping stones 3. Waterbody complexes 4. Areas of high species richness potential 5. Alluvial soils 6. Unique land cover types or areas GIS models were created in ArcGIS 9.2 to support the identification and mapping of ecological infrastructure components. The stream corridors map showed a high density of stream corridors in the forested landscapes to the west and southeast; very few corridors exist in the central Southern Alberta region. The largest patches of natural vegetation over 10 000 ha in size are located in the southeast and northeast. The central part of Southern Alberta has few large patches of natural vegetation, and those that remain in this area will be regionally valuable. The greatest concentration of waterbody complexes is in the northeast portion of Southern Alberta, which has a number of small complexes of standing water. When the top five classes (highest 50%) of species rich areas were selected, grasslands, forests, riparian areas and wetland cover types were picked out. Alluvial soils were found to be concentrated near the base of the Rocky Mountains along the western border of Southern Alberta. Unique land cover types including ridges and low percentage cover types were mapped, but ridges were difficult to analyze at this scale. A combined map of all ecological infrastructure components was created in which each pixel was assigned a sum value of each ecological infrastructure component it included. The high value of several landscape units to overall regional ecological infrastructure was evident. To identify the areas of coincidence between ecological infrastructure and a spatial representation of ecosystem services in the region, the ecological infrastructure was analyzed against a map representing areas with high importance to the provision of ecosystem services. O2 Planning + Design Inc. – DRAFT ii The ecological infrastructure was found to encompass 99.6% of all areas identified as high ecosystem service provision. In terms of the condition of ecosystem services, those areas of high service provision that are coincident with ecological infrastructure are most likely to be in good condition through landscape connections and within large natural patches that promote functioning ecological processes. For future application, each component of ecological infrastructure can be mapped on smaller scales, depending on the desired objectives. These processes and models can therefore support informed land use planning in the region.

Contact ALCES for 02 Planning + Design Inc., 2008

Ecosystem Service Assessment of Wetland Water Purification for the Shepard Slough Study Area

Irena F. Creed Consulting

There is a critical need for regional scale assessments of wetlands for ecosystem services. This study reports on a regional scale assessment using Geographical Information Systems (GIS) and remote sensing (RS) technologies for water purification services provided by wetlands in Shepard Slough, the study area for the Ecosystem Services Pilot Project (ESPP). Prototypes were developed for both a basic (readily available GIS and RS data, most of it freely downloadable from the Internet) and advanced (higher quality datasets with higher spatial resolution) approach. Due to the severe time constraints of the contract (during which we were unable to gain access to the required data for the advanced approach), only the “Regional-Basic” approach was implemented. Based on this Regional-Basic approach, we found monetary benefits to increase from 1990 to 2010 for water purification, with the monetary increase due mainly to an increase in wetland area defined by inundated water. We expect the “Regional-Advanced” approach to provide a more precise analysis, as the basic approach is based largely on the area of wetlands for water purification and ignores many of the other wetland features important for water purification.

Contact ALCES for Irena F. Creed Consulting, 2011

Ecosystem Services Approach Pilot on Wetlands An Exploration of Approaches to Understand Cultural Services and Benefits to Ecosystem Service Assessments

Courtney Hughes, Glenn Brown, Cory Habulin, Gillian Kerr, Krista Tremblett

This report summarizes the socio-cultural studies completed during the ES Pilot. There are a number of complementary deliverables prepared for the ES Pilot including: an Integrated Assessment Report that summarizes the results for a technical audience, an ES Approach Report that focuses on methods and process, a Project Evaluation Report, a Summary Report for Decision makers and a Summary Report for a general audience. In addition there are a number of technical reports including: reports for various components of the biophysical assessment, and a socio-economic report. As such, a detailed overview of the methods used is not included in this report. The combined deliverables for the ES Pilot together provide all the key elements for understanding the results, the methods, project evaluation and the learning’s from the Ecosystem Services Approach Pilot on Wetlands that can support future work on ES in Alberta and internationally. The socio-cultural work completed does not necessarily capture all potential cultural services and/or benefits that may be associated with the wetland under investigation or wetlands across Alberta. While attempts were made to be comprehensive in the selection of cultural services and benefits to investigate, as well as methods selected and analysis undertaken, there may be other cultural services or benefits, or other conceptualizations of these services and benefits, relevant to the study site. As such, further inquiries are likely necessary and would likely prove beneficial to an increasing understanding about cultural services and benefits related to wetlands in Alberta.

Contact ALCES for Courtney Hughes, Glenn Brown, Cory Habulin, Gillian Kerr, Krista Tremblett, 2011

Ecosystem Service Approach Pilot on Wetlands Assessment of Water Storage and Flood Control Ecosystem Services

O2 Planning + Design Inc.

Geographic Information Systems (GIS) technologies were used to model water storage and flood control functions as well as related beneficiaries and ecosystem services of wetlands in the Shepard Slough study area east of Calgary. The water storage model used a raster-based computer script using LiDAR inputs combined with a rating curve to estimate water storage capacity volumes for each wetland in the study area. The flood control model used eight separate predictor variables of wetland flood control functions. Notable results and conclusions of the study included: Study area wetlands provides a total water storage capacity of over 36 million m3-greater than the combined total volume of the Glenmore Reservoir and Lake Chestermere; Wetland water storage provides many supporting and regulating ecosystem services upon which all other ecosystem services depend; Much water storage is located in the large central Shepard Slough Wetlands; however, the large number of small wetlands add up to a considerable storage volume on a cumulative basis; In the study area, Class IV wetlands tend to store the most water volume, both on a per wetland basis and on a cumulative basis, although variability within the class was very high; Class V wetlands also store large volumes, but there are fewer of them and they are less important on a cumulative basis than Class III wetlands overall; Class I and II wetlands have very small average wetland volumes, but they can add up to a considerable volume when taken together as a whole; A large number of wetlands have been drained in the study area, particularly within urban areas but also in agricultural areas, and the trend calculated over 1965-2005 is a 20% drop in wetland water storage volume; Users/beneficiaries of wetland water storage provisioning services are low in the study area; Cattle are the largest ecosystem service beneficiary of water storage and supply in the study area, with up to 144,000 m3/year used by cattle; The flood control index indicates that many medium and small wetlands at high landscape positions provide considerable flood control benefits, particularly on a cumulative effects basis; “Hotspots” of high flood control services included a large cluster of wetlands near the north boundary of the study area, several wetlands east of Chestermere and in the north half of the Belvedere Area Structure Plan area in The City of Calgary; Smaller areas of wetlands with high flood control indicator values are dispersed throughout the study area; All wetlands have the potential to provide some measure of flood control ecosystem services, although this occurs to differing degrees and at different scales; According to a rough calculation, if all study area wetlands were drained effectively, peak flows in the Bow River immediately downstream would increase by up to 37%, indicating the level of importance of these wetlands at mitigating peak flows in the region; and Comparisons of the WESPUS site-scale results to the GIS model results showed: - WESPUS hydrologic function scores weakly positively correlated with water storage volume - WESPUS hydrologic scores moderately positively correlated with the flood control indicator - very high variability and in particular several outliers highlighted model mismatches - caution is required when interpreting indicator values from WESPUS or GIS models.

Contact ALCES for O2 Planning + Design Inc., 2011

Ecosystem Service Approach Pilot on Wetlands: Assessment of Current and Historic Wetland Carbon Stores in the Sheppard Slough Area

Ducks Unlimited Canada

This report focuses on assessing the carbon storage associated with class 3 (seasonal), class 4 (semi-permanent), and class 5 (permanent) wetlands in the Sheppard Slough Drainage Catchment. The specific goals of this assessment were to: 1. Determine the stock of carbon contained in existing wetlands within the Sheppard Slough Study Area, and to; 2. Estimate the amount of carbon dioxide re-emitted to the atmosphere as a result of wetland loss between 1962 and 2005 in the Sheppard Slough Study Area.

Contact ALCES for Ducks Unlimited Canada, 2011

Ecosystem Services Approach Pilot on Wetlands Economic Valuation Technical Report

Yihong Wang, Anish Neupane, Angele Vickers, Tom Klavins, Rob Bewer

The Ecosystem Services Approach Pilot on Wetlands (the ES Pilot) is part of Alberta Environment and Sustainable Resource Development’s 10-year ES Roadmap; the Pilot’s completion and results are considered a progression in understanding and applying an ES Approach to support decision making. This economic valuation technical report is one of the technical reports developed for the Pilot and forms the basis for providing monetary estimates of benefits from wetlands in the Shepard Slough study area. This valuation is part of the Ecosystem Services Approach adapted from the Millennium Ecosystem Services Approach. Shepard Slough (‘the study area’) covers approximately 274 km2, encompassing part of the City of Calgary, Rocky View County and the Town of Chestermere. The study area is primarily agriculture (~57%), with increasing settled areas (~17%) and industrial areas (~10%). About 11%, or 24.5 km2 (or 2,450 hectares), of the landscape is covered by wetlands. This area has been facing land use changes often leading to loss or alteration of wetlands over the past several decades. These land use changes has meant that ecosystem services provided by wetlands have either been lost or altered. In the context of decision making this loss and alteration has not been well understood or accounted for. Wetland regulatory decision makers identified three major gaps with respect to current decision making process. Economic valuation, using the total economic value framework, was used to help address these three major gaps identified by the wetland approval decision makers. There is limited ability to communicate the ‘values’ of wetlands Economic valuation showed that wetlands contribute to human well being by providing services that would otherwise need human intervention and infrastructure expenditure. For example, the economic values of wetland regulating services (such as flood control, water purification and carbon storage) are large and can be more effective and less costly than engineering solutions. The aesthetic benefit, expressed through premium paid for houses located nearby a wetland and recreation opportunities provided by wetlands are significant. These results can be a powerful tool to communicate the values of wetlands with different stakeholders involved in wetland management process. There is insufficient consideration of cumulative effects and long-term consequences of decision making The distribution of economic value and annual value loss on a landscape map can provide useful information in high-level strategic planning with the consideration of cumulative effects. For example, flood control benefit wetlands between 0.1 and 1.0 ha account for over eight per cent of the total, which, although small, is almost as high as the total of those wetlands between 5 to 10 hectares. In addition to the spatial dimension, there is enough flexibility for different development scenarios to be applied and to show the corresponding consequences of different development paces. We used historic wetland loss rate and also projected future potential loss. This projection could be modified using more sophisticated scenario planning. This exercise would be helpful for decision makers when undertaking planning exercise to try and understand the cumulative impact of wetland loss. iii There is insufficient evidence to support avoidance, minimization and compensation decisions on wetlands Economic valuation of wetlands across the landscape can help identify heterogeneous value areas and thus identify priorities for wetland management decisions. From a management perspective wetlands of higher values could be linked to avoidance decisions compared to lower value which might support minimization or compensation decisions. Thus economic valuation of wetland within the ES framework can provide evidence to support the management hierarchy of wetland approval process and also wetland management planning at larger landscape scales. Results of the valuation are summarized in Table EX1. It should be noted that although monetary values of benefits have been calculated, it is not appropriate to aggregate these values across the services. It is partially because of the different scales being used for valuation and value measures (e.g. total, average, marginal value) also differed amongst the ES. Some other limitations and caveats remain. There is still incomplete understanding of changes in ES and how that relates to human wellbeing. Economic valuation provides a ‘snapshot’ of complex and dynamic system and potentially ignores the complex interdependencies among ES. Valuation also assumes that there are no thresholds, discontinuities, or irreversibility in ecosystem functions. In reality, ecosystems have thresholds and services that are likely interdependent. Data and resource constraints influenced the application of valuation methods and in some cases a ‘second best’ valuation method was used. Although reasonable care was taken when using benefit transfer, further work to refine and calibrate those values to local context is recommended. A project of this size and scope involves multiple teams and disciplines, with the interdependencies among their work. Better coordination and integration among work tasks as well as awareness of the dependencies on biophysical assessment outputs to conduct economic valuation is needed. In spite of these limitations and caveats, we believe that valuation provides useful information and can assist in making more informed wetland management decisions. Important to note that this valuation study does not capture all potential benefits associated with wetlands. While we have attempted to be comprehensive in our analysis, only a suite of most relevant ES in the study area was assessed. With the analysis to continue focusing on locally relevant ES to assist in the decision making, a broader suite of ES categories could be assessed to gain a holistic picture of all wetland ES and benefits in future studies. It is also acknowledged that ecosystems are considered to have intrinsic value, independent of the services they provide to humans. However, it is beyond the scope of this study to assess this type of value.

Contact ALCES for Yihong Wang, Anish Neupane, Angele Vickers, Tom Klavins, Rob Bewer, 2011

Ecosystem Services Approach Pilot on Wetlands Integrated Assessment Report

Dr. Ciara Raudsepp-Hearne, Geneva Claesson and Gillian Kerr

Ecosystem services (‘ES’) are the benefits that nature provides to people. Some ES benefits, such as crops, are familiar and tangible; however, other ES, such as water filtration and carbon storage, are hard to observe and are underestimated or unaddressed in decision making. Ecosystems provide innumerable services that are underrepresented or absent in most economic development decisions; however, these services contribute to development objectives (e.g., scenic quality of the land) and to realizing quality of life goals. Identifying and understanding many of the services from wetlands can provide more information to decision makers, which may help to prevent unintended consequences from development decisions. Wetlands, and the regulatory approvals process for residential subdivision development in southern Alberta, were the focus for the ES pilot. Wetlands are an integral component of Alberta’s diverse landscapes and provide a wide variety of ES. For example, if managed properly, wetlands can provide water filtration and groundwater recharge, contribute to flood prevention, and provide habitat for numerous species of interest to naturalists and hunters alike. Many wetlands also have important socio-cultural value because they provide recreational, heritage and scientific/educational opportunities. As improvements are made in describing and valuing the benefits of ES, decision makers can better understand how their decisions might change (positively or negatively) the condition, quality and/or quantity of ES that could have an impact the well-being and quality of life of Albertans, and the businesses that operate in the province. The outcome for the pilot was established as the following: “the development and operationalization of an ES approach to provide a tool to enhance decision making”. The ES approach developed for the Alberta context provides a framework to help identify and quantify - qualitatively, quantitatively and monetarily - the benefits provided by wetland ecosystems. In addition to the outcome, two objectives were established by the project steering committee, with a third captured from the ES pilot project charter: • Test and demonstrate how an ES approach can be used to support decision making by explicitly demonstrating the trade-offs between development and ES benefits provided by wetlands; • Support wetland management in the province by providing additional information to support potential compensation decisions related to land-use development; and • Identify information and capacity gaps for ES assessment to support future ES work. Meeting these objectives involved conducting various assessments on wetland ES to address gaps identified by wetland approval managers at Alberta Environment, the City of Calgary and Rocky View County (a.k.a., the ‘decision makers’) in their application of the wetland approvals process and the wetland mitigation hierarchy (which includes compensation). The decision makers helped the ES pilot team to identify, frame and prioritize key gaps in the wetlands approval process to focus the pilot assessment work. The following represent the refined gaps that were used to design the project: 1. There is insufficient evidence to support avoidance, minimization and compensation decisions on wetlands. 2. There is insufficient consideration of cumulative effects and long-term consequences of decision making. 3. There is limited ability to communicate the ‘values’ of wetlands. The pilot focused on an area covering 274 square kilometres encompassing an eastern portion of the City of Calgary, an area of Rocky View County and the Town of Chestermere. The area was chosen because of the large number of wetlands and current land use pressures where residential development is having an impact on the ES that are supplied by the landscape. The case study area features (6,400+) wetlands ranging in size from less than 0.1 hectare to over 10 hectares. However, while the number of wetlands has increased 18 per cent since 1962, wetland area has decreased by 24 per cent. This translates into a total loss of 7.7 square kilometres of wetlands between 1962 and 2005. Nested in the South Saskatchewan Region, historic landscape change in the region and the case study area has been primarily driven by population growth and agricultural expansion. More recently, urban expansion has led to new changes on the landscape, including an increased percentage of impervious surfaces, stormwater pond creation and new microclimactic conditions. Through a series of working sessions, the ES pilot chose three ES as being the top priority for greater understanding: water storage/supply, flood control and water purification/quality. These ES were chosen for in-depth assessment along with carbon storage, which was included because carbon storage opportunities feature importantly as part of the provincial Climate Change Strategy and related regulations. Additional ES (e.g., pollination, cultural ES) were described and investigated in terms of their contributions to local society, but their condition (e.g., quality, quantity and distribution) was not assessed in detail across the entire study area. The ES pilot engaged a broad selection of stakeholders, including ES beneficiaries, in the pilot. They identified cultural ES as high priorities for management in survey responses and workshop discussions. In particular, aesthetic enjoyment and science and education opportunities were identified as ‘high value’ benefits provided by wetlands. Biodiversity was also identified by multiple stakeholders as being of high importance, however, biodiversity is considered to be a necessary underlying condition for the production of ES but not an ES itself. The information generated by the ES pilot provides a baseline of knowledge about wetland ES in the study area that decision makers can apply in wetland approvals decisions. Highlights from the assessment results include: • ES benefits are context specific, as they relate as much to how the environment is used and valued as to how services are produced by ecological processes. There are a number of beneficiaries of different ES at different scales. • The total water storage capacity of all wetlands in the study area was estimated to be 36.3 million cubic metres. This represents a volume of water greater than the combined total storage capacity of the Glenmore Reservoir and Lake Chestermere. • In the fall of 2007 and 2009, seasonal and dry annual conditions resulted in an estimated total wetland volume of 14.3 million cubic metres or 39.4 percent of total water storage capacity. • An analysis of water storage capacity by Stewart & Kantrud (S&K) wetland class showed that because there is a large number of wetlands that are Class I or II, their contribution to water storage on the landscape is substantial, even if individually they hold less water than Class III-V wetlands. • The estimated total storage capacity lost due to wetland drainage between 1965 and the present is 9.2 million cubic metres. This represents a 20 per cent decrease in available water storage capacity in the study area. • All wetlands in the case study area contribute to flood control. There were no clear trends found for flood control values across either S&K or size classes, suggesting that high or low flood control depends more on landscape context than on class or size of wetlands. • The cost of replacing natural wetlands with built infrastructure was estimated from the total area of engineered wetlands that would be required to provide the same flood control services that are currently supplied by natural wetlands. A replacement cost of all wetlands was estimated at about $338 million. This corresponds to an estimated $2 million per year in economic losses when the historic rate of wetland area loss is applied. • The estimated cost of restoring all wetlands on the landscape would be $43 million. This corresponds to an estimated $257,250 per year in restoration costs if the historic rate of wetland loss is applied (0.6 per cent between 1960’s and 2005). • The majority (87 per cent) of wetland complexes within Shepard Slough have a medium to high capacity to purify water, estimated using a water purification model. • The estimated loss of soil organic carbon between 1962 and 2005 is 44,144 Milligram (Mg) (89 Mg hectares-1). This is equivalent to an emission of 161,832 Tonnes of Carbon Dioxide equivalent (CO2 e). • Applying the provincially relevant Alberta Tech Fund value of $15 /tonne of Carbon Dioxide equivalent, the economic value of carbon storage in the case study area would amount to $16.7 million. • Recreation survey results showed the potential value for recreation from wetlands in the study area to be approximately $4,390,000 per year. This result is based on an estimate of 114,685 wetland visitors each year, each spending $38.28 for a day trip. • Results of a hedonic pricing valuation identified a clear relationship between property value and distance/adjacency to wetlands. If the property is adjacent to a wetland, the value of the house increases by $4,390 - $5,136. Ecosystems Services Approach Pilot for Wetlands – Final Version October 2011 8 The results from the assessment allowed the ES pilot to address the gaps in the wetland approvals process. For example, the pilot identified that many of the ES provided by wetlands are currently excluded in current requirements for municipal Biophysical Impact Assessments and Wetland Impact Assessments and as such, multiple ES are absent from decision making. In addition, wetlands provide multiple ES simultaneously, which is important when considering avoidance or compensation options for wetlands. Importantly, the ES pilot demonstrated that although a wetland is degraded, it could be high functioning and provide a number of ES and benefits. This information could inform trade-offs and also help to highlight ‘hot spot’ areas to avoid in the planning process. A rapid assessment site-level tool tested in the pilot provided immediate benefits for the wetland approval process. It offers a tool for decision makers, complementary to the pilot’s ES approach, to develop information about the ES provided by individual wetlands. It can provide objective information on the values and functions of small and temporary wetlands that are often dismissed as unimportant when compared to large and visually appealing wetlands with permanent open water zones. The tool, Wetland Ecosystem Services Protocol for the United States (WESPUS), requires modification for the Alberta-context, however it provides an opportunity to shape the process of avoidance, mitigation and compensation in a manner that may better reflect public values associated with wetlands. If a wetland approval writer does not select avoidance or minimization, approval writers could use this tool to determine appropriate compensation and restoration requirements. The ES pilot allowed the decision makers to explore information on the cumulative effects of wetland loss and potential consequences of long term decision making. For example, the loss of wetlands in the case study area over the past 50 years has led to a substantial cumulative loss of multiple ES including flood control, water purification/ filtration and water storage. In particular, areas that have historically seen large losses in water storage are more likely to also experience changes in soil moisture, microclimate, flood control and other ES because water storage is fundamental to the delivery of other ES benefits. An important contribution of the ES pilot was the ability to demonstrate multiple ‘values’ of wetlands in the case study area. For example, the results demonstrated that all classes of wetlands in the case study area contribute benefits, regardless of size and magnitude of current degradation. Even small wetlands provide essential services such as water purification and flood control, sometimes in conjunction with adjacent and connected wetlands. To complement typical aquatic environment and hydrology information used by decision makers, the pilot incorporated socio-cultural information on how people value different ES in the study area. Information about local people’s perceptions of why wetlands are important can directly inform wetland approval decisions, as this is new information about the value of wetlands to society. Studies conducted for the pilot demonstrate that even the most abstract cultural benefits (e.g., heritage benefits) are consistently rated as of ‘high’ or ‘medium’ importance to people. The pilot demonstrated that an ES approach can provide a systematic way to assess ES benefits and impacts, and explore the trade-offs associated with development decisions that incorporate more than typical environmental and/or economic information. Given the novelty of the assessments activities, a number of recommendations have emerged to further advance the ES road map: • There is a strong need to examine how the local and regional assessment tools applied can be streamlined to improve efficiency and cost effectiveness. Many assessment activities occurred in isolation, and while the pilot team made efforts to integrate activities and align results, it is recognized that the pilot fell short of the intention to conduct a holistic and integrated ES assessment. Improved integration during the design phase can improve project delivery, communications and the final products, which can reduce costs. • The data, information and resources needed to complete ES assessments, particularly the biophysical assessment, was significant. It will be important to assess what scale and level of importance a policy or plan is to warrant the monetary and staff costs of doing an ES assessment. • The uptake of WESPUS is a ‘low hanging fruit’ to integrate ES into the wetland approvals process and other Government of Alberta activities as other ES assessment methodologies mature. With thirty-years of testing and refinement already, the WESPUS approach requires minor modifications for the Alberta context. Given the popularity of WESPUS, it will be essential to build on the momentum generated in this pilot. The concept of ES is still in its infancy, but has been recognized globally as a useful tool for communicating the value of sustainable landscape management to support development and the long-term well-being of people. Ecosystem Services are becoming increasingly important for governments and business leaders to address in decision making. The Government of Alberta took a leadership role in advancing the ES road map and completing a pilot project to explore the incorporation of ES into an actual policy gap identified by municipal and government wetland approvals writers. This report represents the Integrated Results from the ES assessments and provides key findings and uses for the information generated. The ES pilot reports make up the platform from which to move forward on a number of opportunities to further improve understanding of ES, build capacity to assess ES, and provide more complete information to decision makers to improve the outcomes of their decisions.

Contact ALCES for Dr. Ciara Raudsepp-Hearne, Geneva Claesson and Gillian Kerr, 2011

Ecosystem Services Approach Pilot on Wetlands Operationalizing an Ecosystem Service Approach within the Government of Alberta: Steps and Lessons Learned November

Dr. Ciara Raudsepp-Hearne and Gillian Kerr

Ecosystem services is a concept designed to force us to acknowledge the different ways in which the environment supports human economies, the everyday lives of individuals, health and well-being, and sustainable communities. This concept can be used to communicate the importance of the environment in terms that people haven’t considered previously, and can be used to focus research and policy on how best to manage the environment to sustain human well-being. This report was one of the key deliverables required by the ES Pilot to provide a concise overview of how the ES Approach steps were undertaken and the experience and advice of the ES team about the ES Pilot outcome: the development and operationalization of an ES Approach to provide a tool to enhance decision making. It is therefore written for persons interested in understanding how the ES pilot team modified the generic ES Approach and a number of the challenges and successes with the Approach. It intended to be a useful document for others that want to consider building an ES Approach into their work. It also supports one of the objectives to try to operationalize the ES Approach for decision-making within ESRD. As such there are four primary components to the report. This Report will: 1. Describe the specific context of the ES Pilot Project on Wetlands (‘ES Pilot’), its goals and limitations; 2. Outline the methods used by the ES Approach Pilot on Wetlands to complete the 6 steps of the ‘Ecosystem Services (ES) Approach’; 3. Describe how the project was organized and discuss organizational challenges related to project structure, leadership, communication and working across disciplines; and 4. Discuss how an ES Approach could be operationalized in different contexts within ESRD to meet different objectives.

Contact ALCES for Dr. Ciara Raudsepp-Hearne and Gillian Kerr, 2011

Ecosystem Services Approach Pilot on Wetlands Project Overview 2011

Gillian Kerr

The Ecosystem Services1 pilot is part of the longer term Ecosystem Services Roadmap intended as a tool under the Cumulative Effects Management Framework to help inform trade-off decisions and assure more robust decision-making. The Ecosystem Services pilot team was mandated to demonstrate the use and replicability of the ecosystem services to support department priorities. Using an ecosystem services (ES) approach2 is an opportunity for decision-makers to recognize previously unseen benefits as well as mitigate some unforeseen impacts stemming from development choices. By examining the environment through a framework of ecosystem services, decision-makers will have a more complete picture of the social, economic and environmental consequences, values and perspectives of development, and conservation activities on the landscape.

Contact ALCES for Gillian Kerr, 2011

Ecosystem Services Approach Pilot on Wetlands Wetland Ecosystem Services Protocol for the United States (WESPUS) Site Assessments

02 Planning + Design Inc.

The Wetland Ecosystem Services Protocol for the United States (WESPUS) was highlighted by Alberta Environment as a method with the potential to help address identified gaps in the current regulatory context surrounding wetlands. This assessment was conducted for Alberta Environment by the Biophysical Team for the Wetland Ecosystem Services Pilot project in the Shepard Slough area east of Calgary, with the work being led and coordinated by O2 Planning + Design Inc. (O2). The intention of the WESPUS component of the pilot study was to identify the potential applicability of WESPUS in the context of Alberta’s biophysical and regulatory landscapes. The purpose of the WESPUS component was to learn more about the WESPUS method, apply it using field assessments across a range of sites within the pilot study area, and to provide recommendations and strategies for moving forward in terms of potentially informing provincial policy and regulatory processes. After a series of trial site assessments and data analysis, the following recommendations and strategies were among those provided:  use caution when making inferences and correlations with Steward and Kantrud wetlands classes, as all classes appear to serve many ecosystem services  compare relative values of ecosystem function with a socio-economic evaluation of wetlands function  identify the differences in effectiveness and values of constructed wetlands based on their designated purpose  potentially use this tool to evaluate whether the pre-disturbance function of the compensated wetland has been effectively replaced post construction  consider how to address wetland numbers vs. wetland area. For example, if eight 1 ha wetlands are disturbed and replaced with one 8 ha wetland, it may not address the replacement of the original wetlands’ function  request that Dr. Paul Adamus make some adjustments to amend the WESPUS tool for the Alberta context and that some references are added to assist the field surveyor  initiate further research projects to strengthen the empirical data for Wetlands Ecosystem Services and to assist regulators in making approval decisions (e.g., conduct trials for boreal peatland applications) The ability of WESPUS to address the gaps and weaknesses in the approval process based on the findings of the site assessments are discussed as well. For example:  WESPUS has the ability to inform what types of functions and related ecosystem services a wetland provides. It can also provide objective information on the values and functions of small and temporary wetlands which are often written off as unimportant when compared to large and visually appealing wetlands with permanent open water zones. This tool can provide some evidence to support avoidance, mitigation and compensation decisions on wetlands.  Applying WESPUS in the context of individual applications for wetland disturbance may improve cumulative effects management over time by moving towards greater maintenance of wetland functions and services as opposed to simply wetland acreage under a no net loss policy. Further investigation is required to determine how to make WESPUS compatible with a cumulative effects management system.  A standardized protocol such as WESPUS does allow for a quantifiable and objective approach in communicating the value of wetlands. An evaluation tool such as WESPUS could be used province-wide to evaluate the function and value of all types of wetlands and help inform reclamation planning or compensation efforts.

Contact ALCES for 02 Planning + Design Inc., 2011

Fresh: Edmonton's Food and Urban Agriculture Strategy

The City of Edmonton Food and Urban Agriculture Advisory Committee

This Strategy provides a singular opportunity to imagine how new approaches to food and urban agriculture can make Edmonton an even better place to live, work, play and invest. It’s no exaggeration to say that food matters to each of us every day, but we also need to consider how to make our city a more innovative and dynamic food and urban agriculture setting as we move into the future.

Contact ALCES for The City of Edmonton Food and Urban Agriculture Advisory Committee, 2012

Edmonton to Calgary Corridor Groundwater Assessment

A.A. Barker, H. Moktan and S. Wallace

no abstract

Contact ALCES for A.A. Barker, H. Moktan and S. Wallace, 2011

An Examination Of The Effects Of Economic Growth On Landscape Features And Processes In Southern Alberta Using ALCES

Terry Antoniuk, Brad Stelfox, and Mark Anielski

Regional-scale modelling examined the long-term cumulative effects of land-use, resource demands, and population increases on the landscape of southern Alberta. The results will help inform the project, Southern Alberta Landscapes: Meeting the Challenges Ahead (SAL), in addressing the increased use of our environment into the future. SAL was launched in 2002 as a cross-Ministry, inter-governmental, strategic planning initiative to examine sustainable development issues in southern Alberta. A Base Case Scenario, which assumed a continuation of current land use practices and business plans, was developed first as a Baseline for comparison with other scenarios. An alternate scenario was then run to test various "What-if" questions. Both scenarios used 2000 for year zero because this was the most recent year for which most data were available for the region.

Contact ALCES for Terry Antoniuk, Brad Stelfox, and Mark Anielski, 2007

Modeling Cumulative Effects in Barren-ground Caribou Range: Proceedings of a Workshop in Yellowknife

Jan Adamczewski, John Nishi, Anne Gunn, Terry Antoniuk, Chris Johnson, Don Russell, Ted Blondin, All

In the early 2000s, most herds of barren-ground caribou in the Northwest Territories (NWT) were declining. The declines aroused considerable concern in NWT communities because caribou have been a resource of great value to people in the north for many generations. Possible explanations for the declines include a natural cycle, variation in weather and forage conditions, predation, hunting, disease, and industrial development. Of these factors, some are beyond immediate control, but effects due to direct human influence, like hunting and development, can be managed. The impact of development on caribou is usually not due to single roads, mines, cut-blocks or seismic lines, rather it is the cumulative effects of many habitat alterations over time that affect caribou numbers and distribution. Concerns over effects of development on caribou have been raised in environmental assessments and particularly by aboriginal groups for many years, but progress on assessing them has been limited. To be objective, assessment of cumulative effects must account for other factors, including hunting and natural variation in weather. Due to the need for overall knowledge of a caribou herd‟s complex ecology in assessing cumulative effects, biologists have turned to computer models to help track multiple variables and relationships, and to look at “what if” simulations. While these models cannot predict the future, they can help users understand how various factors interact and what likely consequences of particular management decisions might be. In the 2006-2010 NWT Caribou Management Strategy, a commitment was made by the Government of the Northwest Territories to developing a modeling approach that could assess development in its proper context of natural variation. In this report we summarized the presentations and participant responses at a public workshop held in February 2008, Yellowknife, NWT, on modeling cumulative effects in the range of the Bathurst herd. In addition, we report on progress towards a demonstration project initiated at the February 2008 workshop.

Contact ALCES for Jan Adamczewski, John Nishi, Anne Gunn, Terry Antoniuk, Chris Johnson, Don Russell, Ted Blondin, All, 2008

The Challenge of Developing Social Indicators for Cumulative Effects Assessment and Land Use Planning

Mitchell, R. E., and J. R. Parkins

This paper provides a synopsis on social indicators as relevant to cumulative effects assessment and land use planning. Although much has been done to better understand the social dimensions of environmental assessment, empirical work has been lacking on social indicators that could be used either as measurable inputs or outputs for cumulative effects assessment and land use planning in different kinds of communities and regions. Cumulative effects models currently in practice often fail to address deeper issues of community and regional well-being. Against this gap, social scientists are being asked to make reliable generalizations about functional, measurable relationships between certain social indicators and land use change or scenarios. To address this challenge, the Alberta Research Council held a two-day workshop in 2005 with social scientists. The workshop resulted in a list of prioritized social indicators that could be included in cumulative effects modeling/assessments and land use planning. The top five social indicators included population growth rate, education attainment, self-assessed quality of life, equity, i.e., distribution of benefits, and locus of control. Although consensus on social indicators and social thresholds for cumulative effects models was not reached, the insight gained from the workshop will help inform future cumulative effects assessment and land use planning.

Contact ALCES for Mitchell, R. E., and J. R. Parkins, 2011

Deliberative Democracy, Institution Building, and the Pragmatics of Cumulative Effects Assessment

Parkins, J. R.

Cumulative effects assessment is a process of scientific analysis, social choice, and public policy development, yet the linkages among these domains are often less than transparent. Limits to scientific and technical assessment, issues of power and control of information, and episodic forms of civic engagement represent serious challenges to meaningful understanding of cumulative effects assessment and land-use planning. In articulating these challenges, I draw on case studies from Ontario's Lands for Life and Alberta's Land-use Framework to illustrate current limitations to cumulative effects assessment on public lands in Canada. As a partial remedy for these limitations, insights into a pragmatic approach to impact assessment, in contrast to decisionistic and technocratic approaches, offer a way forward through a more robust integration of scientific information, civic engagement, and public policy development. I also identify a need for longer-standing institutions that are dedicated to regional planning and cumulative effects assessment in Canada.

Contact ALCES for Parkins, J. R., 2011

Scenario Analysis to Identify Viable Conservation Strategies in Paraguay’s Imperiled Atlantic Forest

Carlson, M. J., R. Mitchell, and L. Rodriguez

A common challenge facing land use planning is assessment of the future performance of land use options. The challenge can be acute in developing regions where land use is expanding rapidly and funding and data needed for planning are scarce. To inform land use planning for a biosphere reserve located in Paraguay’s Atlantic forest region, a scenario analysis explored the relative merits of conventional and conservation agricultural practices, sustained yield forestry, and protection. Simulations compared the long-term impacts on land cover, biotic carbon, and income of the area’s residents. Ecological and economic decline were projected under conventional practices. Protection and forestry scenarios achieved only small relative improvements to ecological indicators at the cost of reduced economic performance. By addressing the underlying issue of land degradation, conservation agriculture including no-tillage was the most successful land use strategy both ecologically and economically. Identification of conservation agriculture as the most promising land use strategy prioritizes issues that must be addressed to achieve sustainability, most importantly the provision of education and funding to smallholder farmers. We conclude that scenario analysis offers a flexible strategy to integrate available data for the purpose of informing land use planning in data-limited regions such as Paraguay’s Atlantic forest.

Contact ALCES for Carlson, M. J., R. Mitchell, and L. Rodriguez, 2011

Social-Ecological Thresholds in a Changing Boreal Landscape: Insights from Cree Knowledge of the Lesser Slave Lake Region of Alberta, Canada

Parlee, B. L., K. Geertsema, and Lesser Slave Lake Indian Regional Council

Drawing on the traditional ecological knowledge (TEK) of the Lesser Slave Lake Cree, this paper shares understanding of how resource development has affected water, fish, forests, and wildlife as well as the well-being of Cree communities in the Lesser Slave Lake region of Alberta, Canada. In addition to descriptive observations of change, the narratives point to social-ecological thresholds or tipping points in the relationship of Cree harvesters to local lands and resources. Specifically, the study speaks to the echoing effects of ecological loss and degradation on traditional livelihood practices over the last 100 years highlighting the complexity of cumulative effects as well as the challenges of balancing resource development in the region with alternative land uses including those valued by Alberta’s Aboriginal peoples.

Contact ALCES for Parlee, B. L., K. Geertsema, and Lesser Slave Lake Indian Regional Council, 2012

Science for a Changing Far North. The Report of the Far North Science Advisory Panel

The Far North Science Advisory Panel

This report describes the vast and largely intact ecological systems of the Far North, and recommends a conservation-matrix approach for land use planning. It recommends landscape-level planning, with benchmark areas and specific features of interest set aside from development, while other areas are designated for active management, and the landscape overall is planned for continuity and resilience of ecological function. Adaptive management provides a means of evaluating management strategies as climate change and economic development proceed. It will require sustained commitment to the collection and sharing of information about the Far North, including scientific and aboriginal traditional knowledge.

Contact ALCES for The Far North Science Advisory Panel, 2010

Relationships Between Stand Age, Stand Structure, and Biodiversity in Aspen Mixedwood Forests in Alberta

J.B. Stelfox (editor)

Resource managers and the environmental community are concerned that intensive clearcut logging of Alberta's aspen-dominated boreal mixedwood forests at 60–70 year rotations may alter the age class structure of the forest landscape and result in a change in forest structure and biota. In response to these concerns, we described forest structure and composition of plant and animal communities in young (20–30 years), mature (50–65 years) and old (120+ years) aspen mixedwood stands of fire origin in Alberta. The information collected in this study will serve as a reference against which structure and biota in harvested forests can be compared.

Contact ALCES for J.B. Stelfox (editor), 1995

Synthesis of Habitat Models used in the Oil Sands Region

Judy E. Muir, M.Sc., R.P.Bio. Virgil C. Hawkes, M.Sc., R.P.Bio., Krysia N. Tuttle, M.Sc. and Tony Mo

This project assessed the current state of habitat models used in oil sands region EIA and closure planning to meet the following objectives: 1. Determine which habitat models are used in EIAs and closure planning, and how these models were used; 2. Determine what linkages exist between the habitat model predictions in the EIAs and closure plans; 3. Determine which habitat models have been validated, and of these, describe and evaluate the validation procedures that were used on each model with recommendations for improvement if needed; and 4. Recommend procedures to validate non-validated models. These four objectives were addressed through the completion of four tasks: 1. Review and summarize EIA species habitat models used in the oil sands regions for Environmental Impact Assessments (EIAs) for oil sands project applications and for other projects such as wildlife habitat mapping. 2. Review and summarize how regional wildlife habitat mapping data, EIA habitat model data, and habitat models, are used to develop oil sands closure plans conducted by SEWG or for the Lower Athabasca Regional Plan (LARP) 3. Summarize the validation methods and status of existing validated models 4. Provide recommendations for validation procedures of non-validated models

Contact ALCES for Judy E. Muir, M.Sc., R.P.Bio. Virgil C. Hawkes, M.Sc., R.P.Bio., Krysia N. Tuttle, M.Sc. and Tony Mo, 2011


Government of Alberta

Details of the Forest Reserves Act.

Contact ALCES for Government of Alberta, 2007

Forest Road Sediment and Drainage Monitoring Project Report for Private and State Lands in Western Oregon

Arne Skaugset and Marganne M. Allen

This is the second report completed as part of a four-year project to investigate the effectiveness of forest road drainage practices designed to minimize sediment delivery to streams. This investigation is expected to yield a list of recommended road drainage and construction practices for private and public forest land managers and agencies that regulate forest management activities in western Oregon. This report summarizes data collected during the summer and fall of 1995 and 1996, years two and three of this project. Road drainage and sediment delivery data were analyzed in a regional context, as well as broken into categories based on best management practices (BMP’s). A final technical paper will be produced at the end of this project.

Contact ALCES for Arne Skaugset and Marganne M. Allen, 1998

Predicting deerevehicle collisions in an urban area

Rob Found, Mark S. Boyce

Collisions with deer and other large animals are increasing, and the resulting economic costs and risks to public safety have made mitigation measures a priority for both city and wildlife managers. We created landscape models to describe and predict deer-vehicle collision (DVCs) within the City of Edmonton, Alberta. Models based on roadside characteristics revealed that DVCs occurred frequently where roadside vegetation was both denser and more diverse, and that DVCs were more likely to occur when the groomed width of roadside right-of-ways was smaller. No DVCs occurred where the width of the vegetation-free or manicured roadside buffer was greater than 40 m. Landscape-based models showed that DVCs were more likely in more heterogeneous landscapes where road densities were lower and speed limits were higher, and where non-forested vegetation such as farmland was in closer proximity to larger tracts of forest. These models can help wildlife and transportation managers to identify locations of high collision frequency for mitigation. Modifying certain landscape and roadside habitats can be an effective way to reduce deer-vehicle collisions.

Contact ALCES for Rob Found, Mark S. Boyce, 2010
Projects: 26-50 of 98
< 1 2 3 4 >
Items per page: 10 25 50