Peer Reviewed Publications

Year Title (Author, Description) File Download
2014

Does Expected Future Landscape Condition Support Proposed Population Objectives for Boreal Birds?

L. Mahon, E. Bayne, P. Solymos, S. Matsuoka, M. Carlson, E. Dzus, F. Schmiegelow, S. Song

L. Mahon et al. 2014. Does expected future landscape condition support proposed population objectives for boreal birds? Forest Ecology and Management 312:28-39. Abstract: Assessing the feasibility of proposed Bird Conservation Region (BCR) population objectives requires comparing expected future population size estimates to proposed population objectives. Linking statistical bird habitat models with landscape simulation models can provide a direct method for assessing the ecological and economic implications of alternative land and resource scenarios within a BCR or BCR subregion. We demonstrate our approach for analyses of future habitat supply and population size for a suite of priority landbird species using the ALCES landscape simulation model and empirical bird habitat models within a multi-use landscape located in northeast Alberta, Canada and BCR 6-Boreal Taiga Plains. We used ALCES to simulate future landscape condition over a 100 year time period under three scenarios: business as usual, protected areas, and climate change. Shortfalls between simulated population size estimates at year 30 and proposed population objectives existed for each of the four priority bird species examined suggesting that expected future landscape condition will not support proposed population objectives for these species. Boreal species strongly associated with mature and old forest habitats exhibited population declines over the 100 year simulation period. One habitat generalist, a species associated with both early and late seral stages, appeared to benefit from the range of land use scenarios examined. Our approach improves upon current static approaches used to step down BCR scale population objectives to sub-regional scale habitat objectives by utilizing statistical bird population response models to estimate density and a dynamic landscape simulation model to estimate expected future habitat condition.

Mahon_etal_2014_FutureLandscapeConditionBorealBirds.pdf
2006

Managing Alberta's Energy Futures at the Landscape Scale

Kennett et al., ISEEE, University of Calgary

Alberta's booming energy industry is competing for space on a land base that is subject to increasing human demands from a multitude of industrial, agricultural, residential and recreational land uses. The ability of that land base to support these land uses and to sustain the province's diverse natural ecosystems is therefore a critically important issue when considering energy futures for Alberta. This paper is intended to show how the implications of energy development at the landscape scale can be understood. It also discusses key issues and options for the management of this landscape change. The data and analysis presented here illustrate the potential for integrated and interdisciplinary research to focus and inform the debate that has already begun in Alberta as decision-makers, stakeholders and individual Albertans confront inevitable and difficult choices regarding energy and landscape futures.

Managing-Alberta-s-Energy-Futures.pdf
2019

Modelling regional futures at decadal scale: application to the Kimberley region

Fabio Boschetti, Hector Lozano-Montes, J. Brad Stelfox

We address the question of how to provide meaningful scientific information to support environmental decision making at the regional scale and at the temporal scale of several decades. Our application is the management of a network of marine parks in the Kimberley region of Western Australia, where the key challenges to environmental sustainability are slow-dynamics climate change processes and one-off investments in large infrastructure, which can affect the future of a region for decades to come. In this situation, strategic, rather than reactive planning is necessary and thus standard adaptive management approaches may not be effective. Prediction becomes more urgent than adaptation, in terms of assessing the long term consequence of specific economic and conservation decisions. Working at the interface between future studies, socio-economic modelling and environmental modelling, we define 18 scenarios of economic development and climate change impacts and 5 management strategies aimed at ensuring the sustainability of the marine environment. We explore these potential future trajectories using coupled models of terrestrial land use and marine ecosystem dynamics. The Alces model simulates the dynamics of bio-physical and socio-economic processes on land and the pressures these impose on the coastal and marine environment. This forces an Ecopath with Ecosim (EwE) model used to simulate marine processes, foodweb dynamics and human activities in the marine environment. We obtain a projection of the Kimberley marine system to the year 2050, conditional on the chosen scenarios and management strategies, which is compatible with the best available knowledge of the current system state (as codified in the models’ input) and system functioning (as represented in the models’ dynamics). Our results suggest that climate change, not economic development, is the largest factor affecting the future of marine ecosystems in the Kimberley region, with sedentary species such as reef fish at greatest risk. These same species also benefit most from more stringent management strategies, especially expansion of sanctuary zones and Marine Protected Areas.

Modelling regional futures at decadal scale.pdf
2010

Effects of a Severe Mountain Pine Beetle Epidemic in Western Alberta, Canada under Two Forest Management Scenarios

R. Schneider, M.C. Latham, B. Stelfox, D. Farr, S. Boutin; International J. of Forestry Research

We used a simulation model to investigate possible effects of a severe mountain pine beetle (Dendroctonus ponderosae Hopkins) epidemic under two management scenarios in Alberta, Canada. Our simulated outbreak was based on the current epidemic in British Columbia, which may kill close to 80% of the province's pine volume. Our two management scenarios were conventional harvest and a pine-reduction strategy modeled on a component of Alberta's Mountain Pine Beetle Management Strategy. Our objective was to describe the potential outcomes of these alternative management approaches over the medium and longer term. Alternative management approaches and avenues for future research are discussed.

Pine_Beetle_Outbreak_and_ALCES.pdf
2019

Greater Than the Sum of Its Parts: Towards Integrated Natural Resource Management in Canada

Cassie J. Doyle, Fikret Berkes, Stan Boutin, Matthew Carlson, Thomas Dietz, George Greene, et al.

Natural Resources Canada asked the Council of Canadian Academies (CCA) to undertake an assessment on the state of knowledge and practice of integrated approaches to natural resource management in Canada. To address the question, the CCA convened a multidisciplinary panel of 13 experts from Canada and abroad. Panel members brought expertise related to biology, ecology, economics, human geography, geoscience, law, natural resource management and development, public administration, sociology, and traditional knowledge. The Panel highlighted the importance of considering multiple ways of knowing in INRM, including Indigenous and local knowledge. Although several forms of governance can apply to INRM, all models benefit from the involvement of all actors to participate in natural resource management decision-making. The Panel found that integration is needed to address current realities, and overcome the limitations of conventional approaches which focus on managing individual activities and resources. INRM calls for higher-order decision-making that embraces land-use planning and strategic assessment at regional scales, enabling better and more efficient decision-making at project-specific stages. The report details eight defining characteristics of INRM that can serve as a guide to implementation. It does not call for a complete overhaul of current resource management practices, but notes that there is sufficient knowledge and established tools to start supporting these integrated processes now.

Report-Greater-than-the-sum-of-its-parts-toward-integrated-natural-resource-management-in-Canada.pdf
2010

Influences of Human Stressors on Fish-Based Metrics for Assessing River Condition in Central Alberta

C Steves, T. Council, M. Sullivan

Economic developments in Alberta have resulted in widespread changes in land use that may deteriorate river conditions for fish. Fish assemblages were characterized with index of biological integrity metrics for the heavily-developed watershed of the Battle River, Alberta. Metric relationships with human stressors were quantified using regression and information theory methods. Although the fauna comprised 14 native species, 50% of the catch was white sucker (Catostomus commersoni Lacepede, 1803). Five statistically unrelated metrics were identified as being responsive to stressors: two trophic guilds, one habitat guild, one reproductive guild, and one measure of community structure. Regression showed that the cumulative effect of human developments, indexed as road density in the basin, was negatively linked to the relative abundance of lithophils and positively linked to the relative abundance of omnivores. Agriculture also threatened the integrity of fish assemblages. Stream sections with higher cattle densities in their basins had fewer lithophils and benthic invertivores; whereas stream sections with higher nutrient concentrations contained fewer species, as well as fewer top carnivores, but more true omnivores. Understanding effects of human footprints that are expanding in western Canada will be critical to the successful

Stevens--Council-and-Sullivan-2010-Battle-River-study.pdf
2015

Supplementary Methods for The Future of Wildlife Conservation and Resource Development in the Western Boreal Forest: A technical report on cumulative effects modeling of future land use scenarios

Matt Carlson and David Browne

Supplementary methods for the scenario analysis presented in the report "The Future of Wildlife Conservation and Resource Development in the Western Boreal Forest: A technical report on cumulative effects modeling of future land use scenarios"

Western-Boreal-Report_supplementary_methods.pdf
Projects: 11-17 of 17
< 1 2
Items per page: 10 25 50