Peer Reviewed Publications

Year Title (Author, Description) File Download

ALCES Online: Web-delivered scenario analysis to inform sustainable land-use decisions

Carlson, M., B. Stelfox, N. Purves-Smith, J. Straker, S. Berryman, T. Barker, B. Wilson

ALCES Online: Web-delivered scenario analysis to inform sustainable land-use decisions. In: D.P. Ames, N.W.T. Quinn and A.E. Rizzoli (Eds.). Proceedings of the 7th International Congress on Environmental Modelling and Software. June 2014, San Diego, California. Simulation models are yet to reach their potential to inform environmental sustainability, in part due to inaccessibility. ALCES Online ( addresses this deficiency through web-delivery of high quality scenario analysis to individuals lacking a modeling background. The underlying scenario analysis is holistic through incorporation of a diverse set of drivers and indicators. Simulated land uses include energy, agriculture, mining, forestry, and human settlements; natural drivers such as fire are also included. Environmental and socioeconomic consequences are conveyed by tracking indicators related to landscape composition, wildlife, ecosystem services, and the economy. Dynamics are simulated spatially, and indicator performance presented using maps and regional summaries. Simulations span three time periods: pre-industrial, past century, and next 50 years. The pre-industrial phase informs baselines from which to assess land-use impacts. Simulation of the past century reconstructs changes caused by historical land use, thereby demonstrating capacity for land use to alter ecosystems over meaningful time. A range of future (50 year) simulations allow the user to assess potential consequences of decisions related to development rate, management practices, and ecosystem protection. To facilitate application across diverse initiatives, ALCES Online is customizable through user-defined study areas, indicators, and land-use strategies.

Carlson et al 2014.pdf

Assessing the Future Wildlife Impacts of Conservation and Development in the Mackenzie Watershed

Matt Carlson, Erin Bayne, and Brad Stelfox

Located in northwestern Canada, the Mackenzie watershed's intact boreal ecosystems support a diversity of wildlife including hundreds of migratory bird species and sensitive mammals such as the Woodland Caribou (Rangifer tarandus caribou). The watershed also contains abundant timber and hydrocarbon resources such as the oil sands region in northern Alberta and undeveloped gas fields in the Northwest Territories. We conducted a scenario analysis to explore the long-term impacts of natural resource development to the watershed's landscapes and wildlife. Land use simulations using A Landscape Cumulative Effects Simulator (ALCES) computer model compared a business-as-usual development scenario and a conservation scenario that increased protection and implemented practices to reduce the impact of forestry and energy development. The business-as-usual scenario was predicted to reduce older forest and increase anthropogenic footprint. These simulated landscape transformations caused declines in songbird species such as the Canada Warbler (Wilsonia canadensis), Black-throated Green Warbler (Dendroica virens) and Ovenbird (Seiurus aurocapillus), and led to the extirpation of Woodland Caribou. By reducing landscape disturbance, the conservation scenario lessened the predicted impacts to wildlife. The scenario analysis demonstrates the importance of implementing effective conservation strategies prior to wide-scale development in boreal ecosystems.


Alberta oil sands development and risk management of Canadian boreal ecosystems

Carlson, M. and B. Stelfox

Alberta oil sands development and risk management of Canadian boreal ecosystems. In: J.E. Gates, D.L. Trauger and B. Czech (Eds.) Peak Oil, Economic Growth, and Wildlife Conservation. Springer, New York, New York. The majority of Alberta’s oil sands are yet to be developed due to the high cost of production, but declining conventional reserves will create high pressure to develop the resource. Simulation of the potential future effects (50 years) of accelerated oil sands development demonstrates that associated increases in landscape disturbance, human access, and industrial activity would increase GHG emissions and elevate risk to fish and wildlife. The analysis identified that impacts can be reduced but not avoided by improving management practices and limiting non-industrial access. Expansion of the protected areas network is an additional mechanism to reduce environmental risk, and the aggregated distribution of bitumen deposits provides opportunities for cost-effective protection. A land-use plan has been developed for the region with the objective of optimizing the economic potential of the oil sands while also maintaining ecosystem function, biodiversity, and human health. If the land-use plan is implemented in its entirety, including the establishment of thresholds to limit land use within bounds of ecological integrity, it may provide a model for sustainable development of hydrocarbon reserves.


Cumulative Effects Assessment, Linking Social, Economic and Governance Dimensions

Weber, M., Krogman, N., and Antoniuk, T.

Setting social, economic, and ecological objectives is ultimately a process of social choice informed by science.


Managing the Cumulative Impacts of Land-uses in the Western Canadian Sedimentary Basin: A Modeling Approach

R. Schneider, B. Stelfox., S. Boutin, S. Wasel; Journal of Conservation Biology

In this paper we present a case study from northeastern Alberta, Canada. Our objective is to demonstrate a fundamentally different approach to forest management in which stakeholders weigh current management options in terms of their long-term effects on the forest in order to balance conservation and economic objectives. We use ALCES, a landscape-scale simulation model, to quantify the effects of the current regulatory framework and typical industrial practices on a suite of ecological and economic indicators over the next 100 years. We also use the model to explore an alternative management scenario involving the application of several "best practices" that are currently being advocated.


Integrated Resource Management and Planning entry in the Encyclopedia of Life Support Systems (

Matt Carlson and Brad Stelfox

Land use conflicts are increasing in intensity and frequency as a result of expanding development, a finite land base, and a growing environmental ethic. Reactionary strategies, fragmented bureaucracies, and the legacy of utilitarian management approaches have created disjointed environmental management that is poorly suited to resolve land use conflicts. Integrated approaches to resource and environmental management have emerged as an alternative. Integrate resource management (IRM) applies a number of concepts to balance development and conservation objectives: stakeholder collaboration, explicit goals and indicators, tradeoff analysis, adaptive management, monitoring, development thresholds, and zoning.


Scenario Analysis to Identify Viable Conservation Strategies in Paraguay's Imperiled Atlantic Forest

Matt Carlson, Ross Mitchell, and Laura Rodriguez

A common challenge facing land use planning is assessment of the future performance of land use options. The challenge can be acute in developing regions where land use is expanding rapidly and funding and data needed for planning are scarce. To inform land use planning for a biosphere reserve located in Paraguay's Atlantic forest region, a scenario analysis explored the relative merits of conventional and conservation agricultural practices, sustained yield forestry, and protection. Simulations compared the long-term impacts on land cover, biotic carbon, and income of the area's residents. Ecological and economic decline were projected under conventional practices. Protection and forestry scenarios achieved only small relative improvements to ecological indicators at the cost of reduced economic performance. By addressing the underlying issue of land degradation, conservation agriculture including no-tillage was the most successful land use strategy both ecologically and economically. Identification of conservation agriculture as the most promising land use strategy prioritizes issues that must be addressed to achieve sustainability, most importantly the provision of education and funding to smallholder farmers. We conclude that scenario analysis offers a flexible strategy to integrate available data for the purpose of informing land use planning in data-limited regions such as Paraguay's Atlantic forest. Link to article:


Informing Regional Planning in Alberta's Oilsands Region with a Land-use Simulation Model

Matt Carlson et al; International Environmental Modelling and Software Society

Planning for regional sustainability requires strategic understanding of ecological and socioeconomic trade-offs associated with alternative land use options. We discuss a scenario analysis being undertaken to assess trade-offs for a 93,000 km2 region in northeastern Alberta containing the world's second largest oil deposit. Due to its immense economic and ecological value, the region presents both an opportunity and challenge for the objectives of sustainable prosperity and healthy ecosystems put forth by the Alberta government's Land-Use Framework. ALCES simulation and mapping software are being applied to inform government planners and stakeholders about possible future outcomes associated with land-use options. ALCES is well suited due to its capacity to simulate the cumulative effects of the major types of land use (hydrocarbon extraction, forestry, agriculture, residential) and natural processes (fire and meteorology) on a wide range of ecological and economic indicators. The scenario analysis provides a case study to discuss the technical aspects of ALCES and the Alberta Land-Use Framework's approach of facilitating learning through iterative scenario analysis.


Exploring Cumulative Effects of Regional Urban Growth Strategies: A Planning Scenario Case Study from the Calgary Region of Western Canada

Carlson, M., J. Quinn, and B. Stelfox.

Exploring Cumulative Effects of Regional Urban Growth Strategies: A Planning Scenario Case Study from the Calgary Region of Western Canada. International Society of City and Regional Planners (ISOCARP) Review 11. The article describes the use of the ALCES land-use simulation model to estimate the impacts likely to result from the next 50 years of population growth in the Calgary metropolitan area. The analysis compares the consequences of continued reliance on low density suburban development with a proposed regional plan that incorporates densification. The article was published in the 50th anniversary edition of the ISOCARP (International Society of City and Regional Planners) Review titled “Reinventing Planning: Examples for the Profession”.

ISOCARP article.pdf

Application of Land-Use Simulation to Protected Area Selection for Efficient Avoidance of Biodiversity Loss in Canada's Western Boreal Region

Matt Carlson, David Browne, and Carolyn Callaghan

M. Carlson, D. Browne, and C. Callaghan. 2019. Application of land-use simulation to protected area selection for efficient avoidance of biodiversity loss in Canada's western boreal region. Land Use Policy 82:821-831. Abstract: Avoided ecological loss is an appropriate measure of conservation effectiveness, but challenging to measure because it requires consideration of counterfactual conditions. Land-use simulation is a well suited but underutilized tool in this regard. As a case study for the application of land-use simulation to assess the impact of protected areas, we present a scenario analysis exploring conservation options in Canada’s western boreal forest. The cumulative effect of multiple natural resource sectors, including oil and gas, forestry, and agriculture, have substantially altered the region’s ecosystems in recent decades and elevated risk to wildlife. The evolving state of the region is such that managing risks to biodiversity requires consideration of not only today’s but also tomorrow’s conditions. We simulated the long-term (50-year) outcomes of land use and protection to caribou, fisher, fish, and resource production in each of 104 watersheds in the 693,345 km2 study area. Simulated land use caused increased risk to wildlife in response to northwards expansion of resource extraction and expansion of agricultural lands. For each watershed, indicator performance with and without protection were compared to calculate the benefit (avoided ecological loss) and cost (lost opportunity for resource production) of protection. The capacity for protected areas to avoid disturbance varied substantially across watersheds, as did the potential loss of economic opportunity. Focusing protection on cost-effective watersheds made protected area expansion a more efficient strategy for reducing wildlife risk than reducing the overall rate of natural resource production. Heterogeneity in the cost-effectiveness of protection presents an opportunity to balance ecological integrity and economic growth.

Projects: 1-10 of 17
1 2 >
Items per page: 10 25 50